
Enterprise-Grade PL/SQL:
Doing it Right the First Time

Or…
Making database engineering easy

and fun

by adding rigor to your development
process

Contacts Info
Website: dbartisans.com and dbsherpa.com
Twitter: @billcoulam
Email: bcoulam@yahoo.com
LinkedIn: billcoulam

Passionate about programming & design practices…
…that make our craft fun and fast!

• Speaker at RMOUG, IOUG, ODTUG and UTOUG since 2001
• With Church of Jesus Christ of Latter Day Saints since 2007
• Consultant and data/database architect in telecom and utility

industry (San Francisco, Denver, Houston) from 1995 to 2007

http://www.dbartisans.com/
https://www.dbsherpa.com/
mailto:bcoulam@yahoo.com
https://www.linkedin.com/in/billcoulam

• Note! Where technical detail seems to be missing, it is because each
slide is worthy of an hour or two of discussion.

• Indeed I have an 8 hour course covering many of these topics, and
individual 1 to 2-hour courses covering Debugging,
Instrumentation, Best Practices, Data Layer Decisions, Data
Modeling, PL/SQL Application Frameworks, etc. These can all be
found at the aforementioned DBArtisans.com or dbsherpa.com
website. Look for the Presentations and Papers page.

• This presentation is meant to be an overview of the software
products, principles and practices a great Oracle development
team uses, providing links to the software and papers that can be
perused later for further detail.

https://drive.google.com/open?id=1e3cYgbYFCuWE1JL0mR_sHEWR2rQjcAiXyU2BJcPc-_8
http://dbsherpa.com/presentations-and-papers/

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Does this resemble your typical day?

Or this?

Great database developers habitually…

▪ Simplify / Eliminate Waste / Do Not Duplicate (DRY)

▪ Take Pride in their Work

▪ Learn their Craft

▪ Learn their Tools

▪ Stand on the Shoulders of Giants

▪ Get Another Pair of Eyes

▪ Test

▪ Document & Instrument

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Foundations

Foundations are tools and technologies that must be
decided upon, configured and fully tested before beginning
work.

If changing or introducing a technology is impossible or far
too costly to consider in the middle of the project, then it is
foundational.

Foundations

▪ For example…

▪ Application technology stack

▪ Place to store everything created

▪ Development methodology

▪ Standards and conventions

▪ Design, Development and Testing tools

Foundations: Fundamental Questions

▪ What are you building?
▪ UI, server-side, ETL, validation, pub-sub, message-oriented, fat vs. thin, stateful or stateless,

services, event-driven, automation, etc.

▪ What is the audience like?
▪ Location, size, concurrency, language, etc.

▪ Budget?

▪ Performance?

▪ Security?

▪ Growth?

▪ Quality vs. Time-to-market

Foundations: Technology Stack

▪ Answers to the fundamental questions help guide:

▪ Which UI, app server and database tech will be used

▪ Which OS will be used by developers, designers and DBAs

▪ Which language will be used to develop the server side code that interacts with the
database

▪ Whether or not the data services will be kept in the middle tier or in the database

▪ Which client and server tools can be used

Foundations: Technology Stack

▪ As this is a class on enterprise-grade PL/SQL, we’ll focus on the backend and
assume that your stack involves at least:

▪ Modern app server on Windows, linux or the proverbial “cloud” platform

▪ Services written in Python, java or C#

▪ Data services use JDBC to issue SQL, call ORDS or PL/SQL APIs

▪ Data services use JSON to communicate with the front-end

▪ Oracle SE or EE Database on Unix or linux

▪ Robust, tested, monitored, easily maintained, packaged, framework-driven PL/SQL

Foundations: Everything needs a home

1. Establish a directory structure

2. Install and configure a version control system

Foundations: Directory Structure

▪ Consider:

▪ Organizational structure

▪ Project and product structure

▪ Team structure

▪ Nature of the artifacts produced

▪ Organization-wide vs. project-specific

F
o

u
n

d
a

ti
o

n
s:

 D
ir

e
ct

o
ry

 S
tr

u
ct

u
re

Projects Exempted from corporate virus checker

project1 One project folder per application

project2

project3

dbproject Separate project folder for all DB work

Documentation “” sorts to top so standards are easy to find

Backup and Recovery

Data Governance

Monitoring

Refreshes

Security

Standards

Builds Build infrastructure kept here AND on build box

DBA Stuff that spans databases or schemas

sandbox Each DBA has their own subfolder here

scripts

{more} As you see fit.

Models One subfolder for all modeling artifacts

{databasename} One per database name

db Enforced by our build tool

schema Enforced by our build tool

schema1 Good to have one subfolder per app schema

schema2

schema3

archive Old “build stream” files moved here

future Stuff that gets postponed

hotfix Scripts that do approved prod data fixes

src “Golden” copy or “tip” of latest source code here. One subfolder per Oracle

object type.

test Unit test cases, scripts and results kept here

utils Catch-all for useful schema-specific scripts

work Subfolder per ticket, or per DBA

1803290010-TKT-0010-create_table1.fwd.sql Example of first DB script in “build stream”

1803290020-TKT-0020-create_view1.fwd.sql Second script in build stream

... And so on

always-post.sql Cleanup, grants, test data, etc. Run by build

schema4

Foundations: Version Control System

▪ Many viable products

▪ I recommend Subversion or Git

▪ Also TortoiseSVN

▪ Nice integration with Windows Explorer

▪ Or TortoiseGit

https://subversion.apache.org/
https://git-scm.com/
https://tortoisesvn.net/
https://tortoisegit.org/

Foundations: Standards and Conventions

▪ Technically can be added later in a project, but…

▪ Management pays for functionality and critical fixes, not to correct ugly,
fragile, unmanageable code. They expect that kind of professionalism from
the start.

▪ Far better to have standards in place, and tools to make compliance
effortless, BEFORE work begins

Foundation: Standards and Conventions

▪ Data Design Standard

▪ Database Development Standard

▪ Naming Standard

▪ Build Artifact Standard

▪ Development Methodology

▪ Expectations of analysis, design, coding, testing and release phases

▪ Team Culture and Workspace

Foundations: Standards and Conventions

▪ No need to write your own

▪ Google “PL/SQL Standards”

▪ William Robertson

▪ Trivadis

▪ Steven Feuerstein

▪ Coulam

▪ Adopt one

▪ Customize it to your liking

▪ Ease adoption and enforce use with templates, formatters and peer review.

http://williamrobertson.net/documents/plsqlcodingstandards.html
https://www.trivadis.com/en/downloads/plsql-sql-coding-guideline-v-32
https://community.oracle.com/servlet/JiveServlet/downloadBody/1007838-102-1-144760/PLSQL%20Naming%20Conventions%20and%20Coding%20Standards.pdf
https://www.toadworld.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-00-03/PLSQL-Standards-Developed-for-the-PLSQL-Starter-Framework_2D00_1.pdf

Foundations: Design Tools

▪ I recommend ER/Studio and Oracle SQL Developer Data Modeler

▪ Oracle’s SDDM is now strong enough that it ought to be considered first (especially
since it is free)

▪ Erwin may be making a comeback now that CA has sold it

https://www.idera.com/er-studio-data-architect-software
http://www.oracle.com/technetwork/developer-tools/datamodeler/overview/index.html
https://erwin.com/products/data-modeler/

Foundations: Development Tools

▪ Oracle SQL Developer or Allround Automations PL/SQL Developer

▪ CompareIt or WinMerge for comparing code

▪ TextCrawler for searching code

▪ Automated code formatter for beautifying code and complying with
standards w/o effort…

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
https://www.allroundautomations.com/plsqldev.html
https://www.grigsoft.com/wincmp3.htm
http://winmerge.org/
https://www.digitalvolcano.co.uk/textcrawler.html

Foundations: Formatting Tools

▪ Should be configurable to match your team’s standards and conventions

▪ Formatting tool found in every PL/SQL IDE. Strongest I’ve found are:
▪ Instant SQL Formatter website
▪ SQL Developer’s SQL/Oracle Formatter
▪ TOAD’s Formatter - Great, flexible formatter
▪ PL/SQL Developer’s Beautifier - 98% there
▪ SQL Detective’s Code Analyzer - formatter + more
▪ DDL Wizard - for messy DDL

http://www.dpriver.com/pp/sqlformat.htm
http://www.thatjeffsmith.com/archive/2014/03/how-to-make-your-code-look-like-steven-feuersteins-in-oracle-sql-developer/
http://documents.software.dell.com/toad-for-oracle/12.1/guide-to-using-toad-for-oracle/chapter-1-getting-started/execute-and-manage-code/work-with-code/format-code
http://www.allroundautomations.com/plsbeautifier.html
http://www.conquestsoftwaresolutions.com/page/sqldetective_pr_description
http://www.ddlwizard.com/

Foundations: Testing Tools

▪ PL/SQL Developer’s Test Manager and Data Generator

▪ SQL Developer’s Unit Testing features and Repository

▪ TOAD’s Code Tester

▪ utPLSQL – enjoying a rebirth and wide use of late

https://www.youtube.com/watch?v=7WmDkN3mLCg
https://www.thatjeffsmith.com/archive/2014/04/unit-testing-your-plsql-with-oracle-sql-developer/
https://www.youtube.com/watch?v=Sw6fWbTsDYw
http://utplsql.org/

Foundations: Other Tools

▪ Cygwin - linux terminal power on Windows

▪ Ditto - (clipboard on steroids)

▪ WinSCP - open-source SFTP, FTP, WebDAV, Amazon S3 and SCP client

▪ FreeCommander XE - (two-pane file explorer on steroids)

▪ KeePass - (or similar password keeper)

▪ MobaXterm/PuTTY - *nix terminal manager

▪ Notepad++ - (or similarly powerful text editor)

▪ OneNote/EverNote – multi-OS, do-everything notekeeper

http://cygwin.com/install.html
http://ditto-cp.sourceforge.net/
https://winscp.net/eng/download.php
http://freecommander.com/en/summary
http://keepass.info/
http://mobaxterm.mobatek.net/
http://www.putty.org/
https://notepad-plus-plus.org/
https://evernote.com/

Milestones for Coding Readiness

Technology Stack
Decisions

Directories &
Version Control

Standards &

Methods

Design, Dev &

Test Tools

How is Your Craftsmanship Perceived by Others?

or

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Design Practices

▪ Follow basic relational data modeling principles:

▪ Create and verify the conceptual model

▪ Create and verify the logical model

▪ Create and verify the physical model

▪ Modeling tool should ensure changes in one flow into the others (if applicable)

▪ Document and describe every entity, attribute and relationship

▪ Enforce integrity (datatype, relationships, defaults and cardinality)

▪ Eliminate duplication wherever found

▪ Strive for consistent, simple, flexible models

▪ Version, publish and discuss models with all concerned parties, including
sponsors

Design Practices

▪ First make the model correct, efficient, normalized…

▪ THEN make it friendly

▪ Abstract complex queries behind views and PL/SQL APIs that return ref
cursors

▪ RESTful JSON APIs use the views and PL/SQL APIs

▪ Denormalizations like materialized views and rollup/tally tables for
performance goals

▪ Virtual columns, user-defined types, updateable views and other Oracle
goodies to meet system requirements as needed

Design Practices

▪ Always start design and change design from modeling tool, then forward
engineer into the database.

▪ Allows changes to the model to be versioned

▪ Allows modeling mistakes to be easily seen with visual cues

▪ Publish designs on the intranet and on paper

▪ Distribute to team, management and sponsors

▪ Bring them to meetings when discussing enhancements and issues

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Coding Practices: Use the Version Control System

▪ Ensure the version control system is used religiously.

▪ Every database object that begins with the keyword “CREATE” gets its own source file
stored and versioned in your directory structure

▪ Never modify the database object directly

▪ Development and maintenance activities always begin with the source file

▪ Some PL/SQL IDEs default database object browsing to read-only mode. Use this feature to enforce
the above.

▪ Once compiled and tested, check in changed file with good comments

▪ If development will take a long time, check it in periodically to preserve work

Coding Practices: Use Frameworks and Libraries

▪ No need to re-invent the wheel.

▪ Use pre-built, pre-tested PL/SQL frameworks and libraries to save months
of coding effort.
▪ Used to be a handful of full frameworks. Now we’re down to some of Feuerstein’s

older stuff and mine.

▪ I open-sourced my “PL/SQL Starter” framework in 2008 which includes a number of
robust libraries, including packages for logging, debugging, emailing, auditing and
performance view tagging.

▪ One experiment done for a prior presentation on frameworks found that a complex
reporting and emailing PL/SQL proc, coded side-by-side with and without a
framework, took only 25% as much time and yielded 3X better code using libraries.

▪ “Alexandria Project” is a list of PL/SQL libraries and utilities

https://github.com/bcoulam/plsqlstarter
https://github.com/mortenbra/alexandria-plsql-utils

Coding Practices: Routine Design and Structure

▪ Use PL/SQL packages to group related functionality

▪ Each routine should do one thing and one thing well

▪ Keep each routine short, easily read and understood in a few minutes

▪ Use packaged constants for immutable literals

▪ Use table-driven parameters for mutable limits, ranges, thresholds and
business-rule values

▪ Break enormous, generic packages apart into separate packages that group
related functionality.

Coding Practices: Documentation

▪ Documentation is critical to high-quality work products

▪ Each packaged routine, trigger, view and job should have a detailed
comment

▪ Encourage good descriptions through templates that have comment
placeholders

Coding Practices: Documentation

▪ Fully document each packaged routine in its comment block

▪ Comment block in pkg spec if public routine, in body if private routine. NOT BOTH!

▪ Focus on “tribal knowledge” that can’t be discovered by reading the code:

▪ Who wrote it? When? Why? For whom or what system? What was the intended purpose? Were
obvious alternatives rejected and why? Caveats, instructions and warnings.

▪ Assumptions and expectations about input parameters

▪ Return values, exceptions handled and errors raised

▪ Usage example if not easy/obvious

▪ Also document the body of each routine with pseudo-code

▪ As the body is built, convert the pseudo-code into debug or log messages and add
valuable context

Coding Practices: Instrumentation

Think about some real-world complex software, like Oracle’s Enterprise Manager, a
modern car, Windows Process Explorer, an aircraft, or a network operations center.

They all have interfaces that
offer real-time, valuable insight
into the inner workings,
performance and historical
behavior of their system.

Coding Practices: Instrumentation

And yet this is how much insight and metrics most database engineers build
into their enterprise-grade code:

None! You get to fly blind.

Coding Practices: Instrumentation

Instrumentation is the act of adorning systems with code that directs runtime
context to a destination where it can be useful.

Types of instrumentation:

▪ Logging

▪ Debugging

▪ Notifying

▪ Auditing

Coding Practices: Instrumentation

Useful runtime context includes:

▪ Who: Name of called routine, metadata of caller, etc.

▪ What: Parameters passed, variable values, iteration values, etc.

▪ When: DATE or TIMESTAMP

▪ What changed with old/new values (audit trail)

▪ Metrics (timings, counters and sums)

▪ Exceptions, warnings, errors

▪ Landmarks and breadcrumbs (great for complex or long-running routines)

Coding Practices: Instrumentation

Useful destinations include:

▪ Logging table

▪ Email

▪ SMS Text

▪ Web service

Other destinations include:

▪ DBMS_PIPE, DBMS_AQ, DBMS_ALERT, DBMS_SYSTEM, UTL_FILE,
DBMS_OUTPUT, DBMS_APPLICATION_INFO, DBMS_SESSION, ftp

Coding Practices: Instrumentation

▪ Should not have to build your own

▪ There are many free and open-source instrumentation libraries

▪ My “PL/SQL Starter” framework includes packages for logging, debugging, emailing,
auditing and performance view tagging.

▪ Tyler Muth’s forked “Logger” now found on github, is quite versatile

▪ Local Oracle Advocate, Blaine Carter, has presentations and videos on using Logger

▪ Adopt a good library that is simple to use and meets your needs

▪ Can be added incrementally or all at once

https://github.com/bcoulam/plsqlstarter
https://github.com/OraOpenSource/Logger
https://www.youtube.com/watch?v=mTYShIrfykk

Coding Practices: Performance & Resilience

▪ If it can be done in a single SQL statement, do so

▪ If not, use bulk PL/SQL features

▪ BULK COLLECT, FORALL, etc.

▪ If it must be done row-by-row, use record-based PL/SQL

▪ Records or user-defined objects and input parameter type

▪ Record-based inserts and updates

▪ FORALL can be used on collections of type RECORD

Coding Practices: Exceptions

▪ Ban the use of WHEN OTHERS

▪ The only exception is when the error must be hidden

▪ Write handlers only for anticipated exceptions.

▪ Use a standard way of logging and re-raising handled exceptions

▪ Allow PL/SQL’s default exception model to raise and rollback every
unanticipated exception

▪ Use pre-defined and user-defined exceptions.

▪ Internally-defined exceptions should be abstracted with user-defined named
exceptions

Coding Practices: Exceptions

Internally Defined Predefined User Defined

Bad Better

Best

Bad but correct

Coding Practices: Transactions

▪ The caller is in charge of transaction commit/rollback decisions

▪ This is typically a java class, so most PL/SQL should never commit or rollback on its
own

▪ If the caller is a database job, the PL/SQL block driving the job makes the decision to
commit or rollback

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Testing Practices

▪ Best testing occurs while documenting the interface

▪ Write assertions in the body that test the validity of those assumptions (known as
code-by-contract)

▪ Test-Driven Development

▪ Write tests of the interface before writing the implementation

▪ Write body, re-testing all cases as you code to reach requirements

▪ Left with nice suite of re-usable tests

▪ Re-run the test suites whenever the code changes – able to quickly prove the change hasn’t
adversely affected anything

Testing Practices

▪ Use testing frameworks to help automate tests and the creation of test
suites

▪ utPLSQL is probably your best option as a framework

▪ Various videos, webinars and tutorials available on how to use it

▪ CodeTalk Series: Unit Testing PL SQL Code in the Real World

▪ March 20th, 2018 ProHuddle webinar on utPLSQL by Jacek Gebal

http://utplsql.org/
https://www.youtube.com/watch?v=1qAZvS5rvyY
https://prohuddle.us12.list-manage.com/track/click?u=ae071106ca8045cb0842417af&id=a5172582a0&e=d8ec5c4238

Testing Practices: The Conundrum

▪ Most enterprise PL/SQL routines use a lot of complex, interrelated data or
do a lot of complex stuff.

▪ Writing re-usable tests involves controlled data conditions that may not be
present the next time the test is used. So one must write “setup” and “tear-
down” scripts that create test data specifically for a given test.

▪ Writing data setup and tear-down scripts can easily occupy 60 to 80% of the
development effort.

▪ So re-usable test suites are often skipped

▪ Nirvana: Someday, using tools like Delphix, the entire database state will be
saved in a repository for single or multiple test conditions and that state can
be instantiated in seconds.

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

DevOps

▪ What is DevOps? What does it include?

▪ Build (compile or run SQL statements against target database)
▪ SQL should be scripted. Can include DCL, DDL or DML

▪ Deploy/Release (pre-scripts/tasks, build to Prod, post-scripts/tasks)

▪ Manage Issues and Enhancements
▪ We use Jira and Jama. There are many, many others.

▪ Enterprise-grade DevOps use automation to handle these tasks
▪ We use a custom build system using Maven and CruiseControl that is awesome

▪ Liquibase and FlywayDB embody many of the same features and principles as our
system.

http://www.idera.com/resourcecentral/infographics/why-should-you-learn-about-devops
https://www.atlassian.com/software/jira
https://maven.apache.org/
http://cruisecontrol.sourceforge.net/
https://www.liquibase.org/
https://flywaydb.org/

DevOps: Lessons Learned

▪ Folder per object-owning schema

▪ Hook to notify everyone of new check-ins

▪ Prefix all files with YYYYMMDD####-TICKET#-description prefix

▪ The build stream is incremental. Each script is a new “version” of the DB.

▪ Don’t change scripts once checked in. Instead fix them with another script that will run
later.

▪ Ensure each script is re-entrant

▪ Aka re-runnable or [buzzword alert!] “idempotent”

Agenda

▪ Habits of Great Database Developers

▪ Foundations

▪ Design

▪ Code

▪ Test

▪ DevOps

▪ Maintenance

Maintenance

▪ Traditional maintenance has mostly been folded into DevOps, where the
same developers are responsible for the system front-to-back, from design
to build to deployment to issue identification, documentation and
resolution.

▪ When things go wrong in Production, switch on debug statements for
PL/SQL unit, authenticated user, Oracle session or schema
▪ Should never have to recompile code in Production to get runtime context

▪ Shouldn’t take more than a few minutes to identify root cause of issue

▪ Agree upon and use tool to track and manage bugs, change requests and
release bundles
▪ We use Jama and Jira

https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwiiz_TUiOvZAhUGtcAKHUSZAQsYABAAGgJpbQ&ohost=www.google.com&cid=CAESEeD2I41GgrXpmMXPS-wOblL-&sig=AOD64_1_hq5fRB82cyPhdRwGSj5EOz-MNA&q=&ved=0ahUKEwiIsO3UiOvZAhXL7IMKHQOwCswQ0QwIJw&adurl=
https://www.atlassian.com/software/jira

Maintenance: Lessons Learned

▪ Refresh production frequently, nightly if possible to continuous build DB box

▪ Run proposed production data fixes on the refreshed copy first

▪ Communicate well about future downtime for releases and PL/SQL
compilation “hiccups”

▪ Ensure each DB script intended for release or hotfix is tagged in some way
to associate with the change management tool holding the problem
description.

▪ Write lots of proactive monitoring scripts and email/SMS DBAs when nasty
errors are detected. DBAs should be aware of the problem before the
customers are. Seek budget to improve the issues that waste the most time.

Day-in-the-Life Demos

▪ <time permitting>

What Will Be Your Design & Build Legacy?

OR

Contact and Further Info

Contact: bcoulam@yahoo.com

Papers and Code:

http://www.dbartisans.com

http://www.dbsherpa.com

Framework:

http://sourceforge.net/projects/plsqlframestart

http://github.org/plsqlstarter

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://www.dbsherpa.com/
http://sourceforge.net/projects/plsqlframestart
http://github.org/plsqlstarter

	Slide 1: Enterprise-Grade PL/SQL: Doing it Right the First Time
	Slide 2: Or… Making database engineering easy and fun
	Slide 3: Contacts Info Website: dbartisans.com and dbsherpa.com Twitter: @billcoulam Email: bcoulam@yahoo.com LinkedIn: billcoulam Passionate about programming & design practices… …that make our craft fun and fast!
	Slide 4
	Slide 5: Agenda
	Slide 6: Does this resemble your typical day?
	Slide 7: Or this?
	Slide 8: Great database developers habitually…
	Slide 9: Agenda
	Slide 10: Foundations
	Slide 11: Foundations
	Slide 12: Foundations: Fundamental Questions
	Slide 13: Foundations: Technology Stack
	Slide 14: Foundations: Technology Stack
	Slide 15: Foundations: Everything needs a home
	Slide 16: Foundations: Directory Structure
	Slide 17: Foundations: Directory Structure
	Slide 18: Foundations: Version Control System
	Slide 19: Foundations: Standards and Conventions
	Slide 20: Foundation: Standards and Conventions
	Slide 21: Foundations: Standards and Conventions
	Slide 22: Foundations: Design Tools
	Slide 23: Foundations: Development Tools
	Slide 24: Foundations: Formatting Tools
	Slide 25: Foundations: Testing Tools
	Slide 26: Foundations: Other Tools
	Slide 27: Milestones for Coding Readiness
	Slide 28: How is Your Craftsmanship Perceived by Others?
	Slide 29: Agenda
	Slide 30: Design Practices
	Slide 31: Design Practices
	Slide 32: Design Practices
	Slide 33: Agenda
	Slide 34: Coding Practices: Use the Version Control System
	Slide 35: Coding Practices: Use Frameworks and Libraries
	Slide 36: Coding Practices: Routine Design and Structure
	Slide 37: Coding Practices: Documentation
	Slide 38: Coding Practices: Documentation
	Slide 39: Coding Practices: Instrumentation
	Slide 40: Coding Practices: Instrumentation
	Slide 41: Coding Practices: Instrumentation
	Slide 42: Coding Practices: Instrumentation
	Slide 43: Coding Practices: Instrumentation
	Slide 44: Coding Practices: Instrumentation
	Slide 45: Coding Practices: Performance & Resilience
	Slide 46: Coding Practices: Exceptions
	Slide 47: Coding Practices: Exceptions
	Slide 48: Coding Practices: Transactions
	Slide 49: Agenda
	Slide 50: Testing Practices
	Slide 51: Testing Practices
	Slide 52: Testing Practices: The Conundrum
	Slide 53: Agenda
	Slide 54: DevOps
	Slide 55: DevOps: Lessons Learned
	Slide 56: Agenda
	Slide 57: Maintenance
	Slide 58: Maintenance: Lessons Learned
	Slide 59: Day-in-the-Life Demos
	Slide 60: What Will Be Your Design & Build Legacy?
	Slide 61: Contact and Further Info

