Stateful to Stateless

Modernizing with W‘\‘(\ €
JSON and PL/SQL




P77



Did you just use “modern” and “PL/SQL" in
the same sentence?



Yes



And we’ll talk about how old, backwards and
uncool it is to use a big ORM or embed SQL in
vour application’s middle tier.




Speaker: Bill Coulam

Contacts

 Website: dbartisans.com & dbsherpa.com (soon)
* Twitter: @billcoulam

* Email: bill.coulam@dbartisans.com

* LinkedlIn: billcoulam

Experience and Focus

e (C, C++, Java, JavaScript and PL/SQL since 1995

* Oracle data/database design and tuning since 1997

* Passionate about best programming/design practices

* Andersen Consulting - San Francisco, Denver, Herndon VA
* New Global Telecom - Denver, CO

* The Structure Group - Houston, TX

* Church of Jesus Christ of Latter Day Saints - SLC, UT

* Speaker at RMOUG, IOUG, ODTUG and UTOUG since 2001


http://www.dbartisans.com/
http://www.dbsherpa.com/
mailto:bill.coulam@dbartisans.com
https://www.linkedin.com/in/billcoulam

Learning Goals

Through a case study and lessons learned, we will cover:

1. ORM features and frights. When an ORM is replaced or removed,
what critical functionality must be replaced.

2. Why SQL embedded in the middle tier application server is
generally a bad idea and how to champion its relocation to the
database where it belongs.

3. How to politically and technically leverage existing PL/SQL and
Oracle assets to save the company time, pain and money, and
provide a simple, robust RESTful data services layer as a bonus.



The Tour

* Background
* Old System
* The Challenge

e Solution

* Angular Angles
* ORMmmmm
* Data Done Delightfully

* Lessons Learned



Case Study Background

Internal web application used to review, prepare and assigh senior
women and senior couples to missions and service assignments across

the world.

Old system was created in a hurry in 2007 with little thought for the
future, performance, reliability, etc.

Application architecture mainly based on Java JSF, Hibernate and Oracle
tables and views. Old, stateful, bloated, slow and crusty.



Case Study Background

* Due to a process redesign, new business requirements and desires for
new features, we were given permission to rework pieces of the
application.

e But as we started into it...

* Ul developer found that enhancing in its current state took far longer than it
would to rewrite from scratch.

* Just the first couple pages took a week or so apiece.

 He complained that the code was so huge, convoluted, many-layered and
poorly-done, it actually scared him to open the hood and work on it.



Case Study Background

* Working on the system left developers with feelings/memories like:




Case Study Background

* Developers gathered facts, presented to management and asked for
permission to explore a rewrite.

e After a 2 week proof of concept (POC) exploration, developers
claimed re-writing a screen using Angular was far faster and resulted
in a smaller, cleaner, more maintainable system.

* Promised management we would get done in the same amount of
time, or less, as original budget.

* Given permission to it as a modern thin, stateless, single-page
application (SPA).

* What follows are the valuable lessons learned along the way.



The Tour

* Background
* Old System
* The Challenge

e Solution

* Angular Angles
* ORMmmmm
* Data Done Delightfully

* Lessons Learned



Old System: Ul

* Web pages generated by JSF and Struts.
* Large, convoluted classes that had grown crusty over the years.

* Every developer that had a hand, applied their own unique style and
approach to things.

* Results were old, difficult to read and digest code.
e State managed by Hibernate
e Ul was OK, if a little dated.
* Some screens took 4s to 8s to load. One took 52s to 108s!



Old System: Middle Tier

* Java classes for Ul, business and data layers, using Hibernate...poorly.

e Gigantic, slow object graphs loaded through Hibernate-generated
HQL queries, holding most information needed for each missionary

across all the pages in the app.

* Hibernate wasn’t finished inflicting its features upon us. HQL it issued
was not in our control, awful, hard to debug and change.

* For the worst page, on top of really complex business logic, we found
Hibernate was issuing over 600 SQL statements under the covers.



Old System: Backend

* Oracle held the core missionary database tables, and a few tables
unique to the senior missionaries.

* Five of the most complex queries were turned into views.
e Other than the views, nothing was abstracted or encapsulated.

* Oracle treated like a generic bit-bucket, most of the rich features and
abilities of Oracle were ignored.

* Table names and column names were read, mapped and exposed by
Hibernate, leaving the system tightly coupled and vulnerable to
change.



The Tour

* Background
* Old System
* The Challenge

e Solution

* Angular Angles
* ORMmmmm
* Data Done Delightfully

* Lessons Learned



The Challenge

* Initial design time from June to August was well-spent.
* But 2.5 months were burned trying to refactor as-is and the POC.

* It was now the middle of October and the project was scheduled for
completion end of December.

* Should have had 4 months to integrate the new concepts and
business process, modifying a few pages in the process.

* Now we only had 2 months left to rewrite 80% of the application.
* Young client developer was sure we could make it
» Seasoned services developer estimated 5 months



The Challenge

e Unfortunately, the DBE was not invited to participate during POC

* | assumed that the developers’ research and recommendations

included the whole application stack, especially how to handle data
access and changes

* Instead, the DBE was asked for data layer recommendation on the day
the POC was to end!

* Major panic and hyperventilation
* Managed to buy us a week to investigate options

 Turns out the modern SPA architecture does not dictate a standard
approach to data access. Oh dear.

* To the starting line...Runners take your marks! Go!



The Tour

* Background
* Old System
* The Challenge

e Solution

* Angular Angles
* ORMmmmm
* Data Done Delightfully

* Lessons Learned



Client: Angular Angles

* Java/JavaScript developer who championed the rewrite was very
bright and enthusiastic, but inexperienced and too optimistic.
* Original claims were % hour to 2 hr re-write effort per page!
e Estimates weren’t even close. Real-world dev time to re-write was the typical
2 to 5 days per page, depending on complexity.
* Deep corners and angles of Angular weren’t considered or estimated.
* Data grid/list widget almost scuttled the whole project. Wasted 7 weeks.
* Was tricky to get loading spinner right.
* Grunt and Gradle and SSO headaches.
* Cache http requests. Caching patterns not known during POC.



Client: Angular Angles

* Angular 1.X somewhat immature. Our enterprise framework team
had already abandoned it and eagerly awaited Angular 2.

* Did it need to be a stateless SPA app?
* Going stateless is fantastic for scalability.
* But this app was only used by a handful of users at HQ.
* Benefit of web access questionable. Cannot foresee it ever being mobile.
* |In fact, being a heavy data-entry app, probably should have been a fat client.

 Stateless means that, unless kept in the client, the old state of the
data will not be known when a POST or PUT request is issued. This
means the data must be re-read, potentially doubling DB roundtrips.




Client: Angular Takeaways

* POC should cover all major components/features required by the app.
* Newer tech requires trial and error and sometimes scrap and re-do.
* Easy to do things the wrong way. Maintain discipline.

* Split client and service layer into their own projects. Numerous
benefits from this.

* Lots of built-in goodness inherited from the internally-developed web
app framework and Spring frameworks (Spring Boot, REST, & JDBC).

* Angular is awesome for managing JavaScript libraries



Client: Now

* Even though stateless wasn’t a necessity, we are glad we went that

route.

e Ul is now
e Cleaner

Looks and feels “modern”

More intuitive

Responsive in several ways

Fast

Modular

Easy to understand and maintain



Moving on to the middle tier, we come to
Object-Relational Mapping.

Chant with me now

ORMMmmmmm...



Just kidding



| never want to see another
heavy ORM as long as | live



Middle: Data Layer Choices

* ORMs have been called the Vietnam of Computer Science

e Other articles call them anti-patterns, “the devil” and otherwise show
no love

* Devs so fed up with the difficulty of fusing object and data domains,
they invent new data access frameworks almost daily

e Can be done right, but usually requires an ORM expert

| read around 100 articles and forum threads to survey the current
state of ORM use. One contributor summed it up nicely :

“ORMs are great for simple CRUD operations. As soon as you want to do
anything mildly complex or desire efficiency, you need to write SQL.”



Middle: Data Layer Choices

Even Gavin King, the creator of Hibernate, agrees its adoption was
overdone:

"Just because you're using Hibernate, doesn't mean you have to
use it for everything. A point I've been making for about ten years
now." - Dec 9, 2013 Gavin King’s Google+ feed



Middle: Data Layer Choices

* Like most shops that went nuts with ORMSs between 2005 to 2010,
this app was plagued by the use, misuse and overuse of Hibernate.

* Devs decided early to remove as much of Hibernate as possible.

* But even at their worst, ORMs still accomplish three basic things:
» Allow for rapid prototyping (irrelevant to this study)
* Manage entity relationships (map between object model & data model)
* Manage transactions and data changes
* (Hibernate also gave us an easy caching mechanism which was heavily used)

* When you remove an ORM like Hibernate, its basic functionality still
needs to be handled by something.



Middle: Data Layer Choices

* Being a SPA app the use of RESTful Java services for the middle tier
was a given.
* Client-centric services for marshalling JSON data to and from the Angular Ul
* Business-logic services
* Data access services

* How we would approach managing data (with the ORM out of the
picture) was up in the air.



Middle: Data Layer Choices

* Removing the ORM meant we now had to manage relationships and
CRUD operations in some other way. Nobody in the industry or our
skunkworks team agreed how that should be done.

* Which tier would build the simple and complex SQL statements?
* Which tier would detect stale (aka dirty) data?

* How should stale data detection be communicated and handled?
* Which tier would detect and manage data changes?

 How would optimistic locks be handled?

* These questions had to be answered in a week and became the
genesis of this presentation.

* We began with all the options available at the time...



Middle: Data Layer Choices

e Custom POJOs and raw JDBC.| Fast execution, but slow to code.

e EJB: | Ick. Nope. Never again.

* Big ORM:| Can be done right. Usually isn’t. Big nope.

e Thin ORM: | Seemed viable. Little experience with them. Not approved.

.S LAICheAA Aol - nnT“"““‘ N D r.]tit
Q Too new. Zero experience with these. y

e Our current internal standard: Spring Framework [Boot, REST,

JDB(]

* Our forward-thinkers: SOA (enterprise service bus of data services
which abstract and secure queries, views, & stored procedures)


https://spring.io/guides#gs

Middle: Data Layer Choice

* The data services would use Spring JDBC to talk to Oracle, but leave the
heavy lifting to Oracle views and stored procs

* Discussed existing and new embedded SQL queries but devs and DBE
agreed that SQL belongs in the database. (More on this in a moment.)

* DBE re-used existing views and moved embedded SQL and translated HQL
into new stored procedures that abstract, encapsulate and protect the raw
data structures and complexities of SQL queries.

* Query procs would return Oracle REFCURSOR (pointer to result set)

e Data services do row-mapping of DB call results to Java objects, and use
Spring REST to marshal data to and from JSON objects consumed by
Angular client.



DB: Data Done Delightfully

With the choice to leave SQL resident in the database, all that
remained was deciding how to handle stale/changed data detection
and the locking strategy.



DB: Data Change Detection

For stale and changed data detection, we had various options:

e Detection in the client

* Client uses local storage to keep state in the browser and track what actually
changed. DML done in middle or DB tier. DML layer must re-read DB for stale.

* Loved this option. Wanted to use new HTTP PATCH verb, but no support yet.
* Developer swamped with Angular problems. Punted.

e Detection in the app server

* Every field passed to and from client. Service tier re-reads DB for stale and compares
current state with every field from client. DML can be here or in DB.

 Detection in the database

* Every field passed from client. Still re-read DB for stale and data changes, but very
fast as it avoids the network and object creation/population. SQL dead simple,
instrumented, written by experts, monitored, tuned, etc. This became our best

option given our constraints.



DB: Data Locking

* To ensure that newer data is never overwritten by older data, you can

choose to pessimistically lock or optimistically lock.

* Very few reasons for pessimistic, unless records are frequently changed at the
same time by multiple users. These locks serialize data access and cannot

scale.

* Optimistic locking assumes overwrite condition rarely happens.
* When the data is first read and passed to the client, no lock is obtained.
Instead a hash, version number, timestamp or similar signature based on the
current state is passed along with the data.

* Upon update, the program compares the current state of the data in the
database to what it was when sent to the client. If the current state is newer,

the client changes are not allowed to proceed.



DB: Data Locking

Various methods can be used to determine if the client’s data is stale:
* Full re-select with serialized lock and old/new values passed in from the Ul.

* Update of new values where the current database values match the old
values passed in from the UI. If the uEdate finds no rows to update, it is
because the values in the row have changed since it was first read.

* Timestamp or counter that is maintained by trigger. Passed to Ul during
read. Ul passes it back during write for comparison to current value.

e Checksum generated using OWA_OPT_LOCK.checksum(). Uses row’s
ROWID to access the column values.
e ORA_ROWSCN function.

* Table must be created or re-organized with the ROWDEPENDENCIES clause,
otherwise rows in same block share the same ORA_ROWSCN.



DB: Data Locking

* Personally prefer the timestamp as it gives us 3 for the price of 1:
* we know the row has changed
* we know when it changed
e can serve double duty as both audit and versioning column

* In our case, we already had a numeric version column in place from
Hibernate forcing it upon us. So timestamp was sadly jettisoned.

* We pass version column back within query results. Client returns this
to DB when updating data.

* Update APIs re-read data, compares latest version to version given by
client, and raises exception with message if client data is stale.



DB: Data Access API

* With Hibernate removed and our strategy decided upon to replace its
core functions, all that remained was to convince management that it
was worth our time to move SQL behind views and PL/SQL APIs
(packaged functions and procedures)

* Very few PL/SQL cheerleaders. Management all too often gets their
opinion second-hand from the jaded and uninformed.



pintainability
rver

bnd lang for app.

* Not cache¥ faster. Dynamic SQL as fast or faster

than stored



DB: Arguments for PL/SQL as Data API

 Home for SQL in the DB where it belongs

» Agility when changing app development language/framework
* Continuous and easy deployment

* Speed and efficiency

 Set/Bulk transactions and processing

* ETL

* Security

e Abstraction and de-coupling

e Centralization of common logic and reusability

e Automation of routine data-centric tasks

* Built-in and bolt-on auditing and instrumentation



PL/SQL: SQL Placement

* Can feel like a religious debate, but there is only one truth:

e All SQL should be kept behind an abstraction layer in the database (views,
packaged cursors or packaged PL/SQL routines)

* SQL should be written by someone that understands relational, sets,
SQL and your database’s capabilities.

* Reviewed, tested and tuned by DBAs

e Can be easily instrumented for logging and debugging. Much easier to
troubleshoot and monitor when kept inside the database, next to the
data, where it belongs.

* Much more likely common SQL will be cached and re-used



PL/SQL: App Evolution

* How often do apps change a framework they’re using? (POJO -> EJB -
> Struts -> Ajax -> JSF -> Angular -> ?)

* Do any of them share the same DB access methods?
* How often do apps change the database?

* Keeping the SQL and data logic in the database means much less work
when re-tooling an app



PL/SQL: Security

* If business requires stiff protection of data structures, don’t grant
them to any accounts.

* Construct PL/SQL API for data access and manipulation

* Design security scheme for the stored procs that have access to the
tables and views.

 Use DBMS_ASSERT to test for valid inputs and avoid injection
* Use new white-listing to further restrict access to PL/SQL routines
 See Bryn Llewelyn’s excellent Why use PL/SQL? whitepaper



https://blogs.oracle.com/plsql-and-ebr/resource/Why_Use_Plsql_Whitepaper5.pdf

PL/SQL: SQL Injection-proofing

* SQL written by devs and kept in the middle tier is much more likely to
suffer from concatenation problems, hurting performance, shared
pool and inviting SQL injectors

* SQL behind a PL/SQL interface guarantees no SQL injection (unless
dynamic SQL is being written with parameters)



PL/SQL: Deployment

* Being an interpreted language, PL/SQL is very simple to deploy.
 Compile the versioned source file into the schema. Done.

* Dependency model ensures package state isn’t invalidated unless
absolutely necessary.

* App data layer should be amended to capture the “existing state of packages
has been discarded” error and re-try the previous call.

* Abstract structures using views, ref cursor OUT parameter for query
routines, and record-based DML.

* Voila! Self-adjusting code that can be continuously deployed to Prod



PL/SQL: Data Proximity & Network Latency

* Typical: Query DB, transport result set across the network, load
objects, perform the operation(s) on the data in memory, unload
objects, transport data back to DB, update and commit.

 Stored Routines: Call routine, query DB, perform operation(s) on the
data in memory, update and commit.

* Eliminating the items above in red saves significant runtime when
dealing with large result sets.



PL/SQL: Large Data Sets

e RDBMS are set-oriented

* Oracle is awesome at querying and manipulating large, relational
result sets.

* Don’t treat DB like “dumb” persistence box

* Take advantage of the set and performance-oriented features of your
DB
* Doing as much as you can as one SQL statement
e Partitioning and parallel processing
* Pipelined functions
 If PL/SQL is the solution, use bulk features BULK COLLECT and FORALL



PL/SQL: Extraction

e Use PL/SQL to extract data and return to client or write to file or

other output mechanism.
* This is especially appropriate if the extracting SQL query is complex and the
resulting data is large.

* Pipelined functions deliver data to client of function as fast as
possible



PL/SQL: Transformation & Loading

* If requirements need to pump large amounts of data into the
database, in particular if calculations or derivations need to read the
destination database while processing incoming data, do it in the
database using external tables and pipelined PL/SQL functions.

* Can use EXTERNAL TABLE option and avoid copying/loading the data
entirely




D 2 ' BT o S .
‘\? . » In‘\ L "‘. - ‘I . A ”
' " B R o N !
N e R S
e e B o U

PL/SQL: Common Business Logic & Re-use

* Database processes, jobs, routines, triggers that need to use common
business logic can’t take advantage of web services or middle tier
methods, which demands duplication and fragility.

* Critical algorithms that must be available to and used by multiple
systems and tiers should be kept in the least common denominator
(the database) as a stored routine.

* Design the PL/SQL interface well. Document it well. Publish it.

e |f direct access to the DB is not available, the stored routine can be
published as a web service just like any Java-based web service.



PL/SQL: Auditing & Logging

* SQL in the middle tier is notoriously done poorly (by devs or JPA
engine).
 When things go wrong, it is difficult to debug, monitor and log.

* Can be done right, but usually isn’t

* SQL kept in stored packages trivial to instrument, monitor, debug,
tune and re-deploy.



PL/SQL: Automation

* Most common use of PL/SQL

* Used often by physical/system DBAs to schedule routine reports,
extractions, loads, monitoring tasks, etc.



PL/SQL: Final Considerations

* Time

* SQL expertise

* PL/SQL expertise

* Size and complexity of data model

* Portability

* Scalability and Performance

* Maintainability/Tuning/Troubleshooting



Case Study Results:

Old System

* Ul produced by JSF/Struts-based Java classes running in app server
* Hibernate ORM

* Persistence to Oracle as a dumb black box

New System {live code walkthrough, time permitting}

* Ul is Angular 1.3 calling RESTful services

e RESTful Spring-based Services in Tomcat

 Oracle views and PL/SQL API for reporting, queries and updates



The Tour

* Background
* Old System
* The Challenge

e Solution

* Angular Angles
* ORMmmmm
* Data Done Delightfully

e Lessons Learned



Lessons Learned

Consider all Ul, middle tier and backend components up front. Ensure application
architecture is complete before estimations and recommendations.

* SPA Ul: Responsive design, navigation and paging, lists and grids, offline storage, etc.
* Middle: App server, frameworks, REST, JSON, ORM, etc.
* Backend: Persistence mechanism.

Oéjestion estimates that don’t feel right, especially if the technology is bleeding
edge.

If you do use an ORM, hire an ORM expert or model in the small

* Grab only the data needed for the current page. Small object graphs that do one thing and
one thing well.

Moving the SQL behind a PL/SQL API benefits everybody
Where you put the INSERT, UPDATE and DELETE APIs is a toss-up

Use the Agile practice of involving the users early and often

* Seeing the cleaner, faster functioning initial screens motivated them to pay for and approve
the additional months we needed to finish the rewrite.



