	1
· … not a professional speaker.
· fellow … enthusiast … enjoys learning, applying … sharing
· I’d like to be criticized for the technical content, not ability to speak/entertain.
· I’ve been writing in C, C++, a little Java and PL/SQL for 16 years now, and speaking about it for 10.
· …submit to UTOUG. You never learn more than when you have to teach.
· Before we get started, I’m trying something new this year to see if it is of any value to you. I’d like to share a few maxims and truths I’ve learned about database development over the span of my career. It’s not an exhaustive list of everything I’ve learned, but some of the more rememberable lessons that keep reaffirming themselves upon me.
	2
#1 First lesson learned. Therapy for the perfectionist. Point of diminishing returns. At some point, it is good enough to ship. Don’t be upset when bugs.
#2 AC training. Key aspect of agile. Constant feedback.
#3 DRY (don’t repeat yourself). Don’t hardcode. Each routine should do one thing and one thing well.
#4 If it’s unwieldy, mind-boggling, hard to navigate, days to understand and use, etc., it’s wrong. Something happened. Back up and try again. Nuke and re-write if you have to.
#5 Happy-day, hello world-like test cases won’t exercise your system well.
#6 Pair programming. Two heads are better than one. You’re too close to the forest to see the trees, etc.
#7 Documenting the public interface, usage, assumptions, finds 85% of bugs.
#8 This lesson is relevant to this session. Your code should be easy to read, use, follow, debug and maintain. If not for your own sake, at least as a silent witness of your legacy and as a kindness to your successor.

	3
To set the stage and get the gears turning a little, I’d like to ask a few questions:
{ask questions}
· How did management reward your heroic efforts?
· Programming, at the least the sort that gets me up in the morning, is supposed to be fun!
· There are many best programming practices to get you there.
· I’m going to focus on instrumentation and dynamic debugging, which are easy to learn and apply, yielding code that is easy to monitor, maintain, manage and troubleshoot.
· I’m hoping you’ll get so excited, you’ll download an instrumentation library during this talk, install it and start using it when you get home.
	4
· So we’re going to talk about the lifecycle of a typical production PL/SQL problem, in particular finding the problem.
· We’ll define instrumentation and see how it applies to becoming aware of and finding the problem.
· Then we’ll look at some built-in tools provided by Oracle that can be used to instrument. They come up short.
· This drives us to survey the existing instrumentation market. We’ll take one of these and demo its installation and how you can be using it within minutes.

	5
· What steps does a production problem usually pass through on its way to being found, resolved and everything returning to normal? {read through quickly}
· This presentation focuses on the first two steps, which we want to be as quick and painless as possible.
	6
· How do you typically become aware that there is a problem in Production?
· The “Silent Fester” method. The “Side Effect” method. The “New Guy” method. Phone call. Error on end-users’ screen. Email. Operations monitoring alert logs, etc. The damage is already done by the time we become aware of problems through these methods.
· In an ideal world, we would become aware of the problem before the users do. With instrumentation in place, we can proactively monitor sessions, SQL, resources, logs, metrics, audit data, etc… and perform analytics on them, letting our systems automatically notify us when something is amiss.
· If something unexpected happens, which our proactive monitoring does not cover, we want to be able to find the problem as fast as possible.

	7
· Without instrumentation, it can be difficult to impossible in Production. With instrumentation, it can be a cake-walk.
· But even with instrumentation, for certain systems and situations, reviewing what happened after-the-fact is not sufficient. Sometimes a problem simply can’t be replicated in environments other than Prod. In both cases, the error has to be replicated in Production, with detailed logging/debugging turned on, so we can see in real-time what is happening.
· Once found and fixed, a rule or module can be added to proactively look for and notify if the same condition arises again.
· We’re all familiar with debugging. But what does this “instrumentation” mean?
	8
· It’s a mouthful. Big word. Not fun to say or type repeatedly. But I can’t think of a better word except for “windows”, which is probably trademarked.
· Instrumentation is actually a concept that is very familiar to us all. {Show pics.}
· Imagine driving a car, flying an airplane, running a telephone network or large enterprise WAN with absolutely no windows, graphs, dials, reports or data of any kind to tell you what the system is currently doing. And yet this is how we like to write our software because we perceive the instrumentation is busywork. Complex systems require instruments, windows into the guts.
· Here’s how I like to define instrumentation in the context of software engineering….

	9
Runtime context is…
I see runtime context fitting into four buckets…

· The destination of the runtime context is really up to you, but my favorite is a logging table behind an anonymous transaction.
· Kept in the database you automatically inherit everything Oracle and SQL offer (query, filter, mine, backup, etc.)

Let’s look at what comes with Oracle to help us instrument.
	10
· basic and FGA seem promising, but neither provide column-level auditing Oracle really had nothing for column-level auditing until 11g’s FDA. Which is an extra cost option and slow to get change data out of.
· Can’t manage what you don’t measure. Method-R an entire methodology about performance tuning based on response time.
· DBMS_UTILITY.get_time. Been around a long time. Returns elapsed time in hundredths of seconds?
· DBMS_PROFILER helps you quickly identify performance bottlenecks and when integrated with a GUI tool, can do so in an intuitive and visual way. However, it is better used while tuning in development where you have full control of the start of the session and what is called.

	11
DBMS_OUTPUT:
When most Oracle developers think of debugging PL/SQL, their thoughts turn to DBMS_OUTPUT. This is like bringing the rusty, flatted BMX bike you had as a kid to a street race, instead of the Yamaha YZF-R1 superbike sitting unused in your garage. DBMS_OUTPUT, like Java’s System.out.println, is known as a “poor man’s” debugger. Although it can be useful, and has been a staple of PL/SQL coders for 15 years, it should only be used in quick-and-dirty development and discovery. Worst part is transaction dependence.
A more appropriate use of DBMS_OUTPUT is as a quick-and-dirty logging tool for transient anonymous blocks, often written during data exploration, unit testing and development. We use DBMS_OUTPUT within our automated database build system to read what happened in scripts that had anonymous PL/SQL blocks, piping the output to the build logs, which are further examined by the tool for build success or failure. Ensure your instrumentation includes the ability to output messages to stdout/screen. But as a debugging mechanism, it has many limitations and far superior alternatives, like DBMS_PIPE and DBMS_DEBUG
	12
DBMS_DEBUG:
· Traditional debugging is usually done within a programmer’s IDE and allows the troubleshooter to step in/out of modules, run to breakpoint or condition or exception, add watches, change variables at runtime, peer into memory structures, view code execution in real-time, etc. PL/SQL has this capability too.
· Since Oracle 7, there has been a debugging API that PL/SQL IDEs have used to provide the veritable debugging superbike.
· To debug, need DEBUG CONNECT SESSION system privilege.
· With DBMS_DEBUG_JDWP it is possible to begin a session with some other application, and have the IDE “wake up” when it detects a connection entering that object. Unfortunately, it does no good if the client application was not coded for remote debugging.
· Leaving objects compiled for debug in Production is not recommended. Performance can be impacted due to the overhead it imposes. But in my experience, the scariest thing was stability.

	ORADEBUG:
· This “undocumented” but well-known utility does allow real-time peeking into other sessions, one of the things instrumentation should be able to do. Unfortunately, it is oriented more towards really low-level memory and process debugging and tracing.
· It is the stuff of Oracle wizards that peep and mutter. Oracle Support prefers that you not use it unless instructed to. That it requires SYSDBA privilege is another factor against using it for production instrumentation. There are many informative papers on this utility if still curious, but there are definitely far less obtuse ways of peering into the execution of active sessions.
DBMS_ERRLOG:
This package sure sounds like what we need for logging, but the name is somewhat misleading. It is only used to create a special DML error logging table. It is useful in its own right, but useless for the kind of logging we need.

	DBMS_ALERT:
· Despite the docs indicating it is useful for asynchronous notification of database events, its use is transactional; that is the waiting client can’t see the desired event message until after the alerting session commits. This is an Achilles heel for instrumentation which needs guaranteed message delivery, even if the transaction fails and rolls back.
· According to various sources, using alerts is also resource intensive. The client has to wait (blocks) and the server piece requires a pipe and a lock.
· I found that it takes about a second to get registered and return to waiting, as the signals that followed right after a prior signal were simply lost. Oracle docs warn about this possibility. The messages are limited to 1800 chars as well. Finally, session-specific metadata, like client_id isn’t communicated across to another session. Taken together, DBMS_ALERT is unsuitable for instrumentation.

	DBMS_PIPE:
· is actually promising. Sending messages is independent of the sending session’s transaction.
· There is a level of security offered with private pipes that could be perfect for debug, timing and error logging within the application object-owning account.
· Packing the messages is a little cumbersome, and it does not guarantee message delivery like AQ does.
· Furthermore, once the message is consumed it is automatically removed from the buffer and cannot be read again. One can send the message to a table or file where it can be read again, but that begs the question why the message wasn’t sent directly to the table in the first place, bypassing the pipe entirely?
· Still DBMS_PIPE is a viable piece of infrastructure for getting instrumentation messages out of an application.
	

	13
· SYS.DBMS_SYSTEM includes the ksdwrt() routine, which lets you write messages directly to the alert log, independent of the containing transaction. It is the closest thing Oracle includes that almost matches our needs for logging. If the client identifier has been set, it will be used in the alert log entry, helping pinpoint who generated a particular message. A timestamp will be written, along with other session metadata like client module (program), client machine name and address, module, and host process ID The first parameter to ksdwrt must be 2 if writing to the alert log.
· DBMS_SYSTEM is not typically granted to non-SYSDBA accounts (for good reason). Writing to the alert log is not a great idea either. Oddly, each new line in your message is interpreted by ksdwrt as a separate message, and normal characters are escaped with their HTML equivalents, making some messages to read outside of a browser. Plus you can’t control the format of the log messages. Think very carefully before opening its use up to other accounts or roles.
	14
· The UTL_FILE package provides the low-level framework required of any logging solution that wishes to write to database host files. As long as a file has been successfully opened in write or append mode, calling UTL_FILE.put_line will send a message to the file, formatted as desired (up to 32K characters per line), independent of the encompassing transaction. However, using all of UTL_FILE’s constants, exceptions and routines is rather involved and prone to human error. It is best to wrap this in a custom file-logging API that hides much of the complexity for your developers.
· There are other packages provided to interface with certain network protocols, like HTTP and TCP/IP which can be used to send instrumentation to specialized destinations.

	15
· Client metadata available in V$ views: module, action, client_info and client_identifier. Despite 11g pkg spec, Oracle still truncates their length to 48, 32, 64 and 64 bytes respectively.
· They are somewhat weak individually, but in combination they are powerful. Originally intended for 2-tier and client-server applications to identify themselves to the database, they can be put to great use inside PL/SQL programs to provide DBAs with low-overhead, insightful, real-time, transaction-independent keyhole views into what the program is currently doing. This is particularly handy when debugging programs taking longer than expected or hanging.
· Setting the client metadata values into the session is what I like to call “tagging” a session, sort of like branding cattle (that little session is mine!)
· Main reason to use DBMS_SESSION is to ensure your frontend applications are passing the user’s login to the database (client_identifier). This is known as end-to-end identification. Oracle docs call it end-to-end metrics. I’ve given an entire presentation on this subject, so won’t go into detail here.
· DBMS_APPLICATION_INFO’s main routines are set_module(), set_client_info() and set_session_longops().
· Progress meter. Auto…custom.
	16
· Tag durability is a problem. Sometimes they stay around too long. Sometimes they are cleared or overwritten prematurely. This is particularly tricky if nested.
· So although DBMS_APPLICATION_INFO should be an integral part of an instrumentation library, it is no fun to type repeatedly and it should be wrapped in a library to handle nested tagging.
· If modifying your application’s connection classes to pass the client_id, also modify them to clear package state, application contexts, and session tags before returning the database connection to the pool.
· There are a number of scattered helper routines and built-in functions that can return metatadata about the connected client, database host, database, instance, version, etc. These are things like DBMS_UTILITY.current_instance, DBMS_DB_VERSION.version and release, and USERENV namespace which offers a host of values describing the current session. These should be included in your instrumentation library so that they get used automatically when logging messages.

	17
Given everything we now know about what Oracle offers, and their drawbacks, we can form a decent list of requirements as we design or shop for a library of re-usable instrumentation routines.
If you are going to build your own library, ensure it meets most of these requirements, or it will quickly be ignored and fall into irrelevance.
Where it comes to dynamic debug logging, there are additional details our library should handle.
By simple, I mean dead simple. Easy to remember. Easy to type. Not easy to screw up.
Our instrumenation library should at least allow logging of messages to screen and table, optionally to file. There are other possibilities, not as useful or necessary in my opinion, that you’d have to evaluate to see if they better meet your needs.
	18
Let’s take a look at the commercial, open source and freeware market.
· Many of the above are quite good. Some are limited to just logging. Some are more complex to use than others.
· In my decidedly biased opinion, the easiest offering to begin using, which satisfies the requirements on the previous page, is the “Simple” version of the open-sourced PL/SQL Starter Framework.

	19
· This is a graphic depicting how Starter is meant to be shared as a common foundational layer under multiple application schemas in a single database.
· It also depicts a high-level logical data model of the tables that support the framework, and the two handfuls of packages that expose the services of the framework, as well as the layering and interdependencies between them.
	20
· The reason I never fully adopted Steven Feuerstein’s framework is because it was too complete. Too much to digest. Learning curve too high. So I didn’t bother.
· Starter was created and, over the ensuing years, simplified in order to address that complexity and make it more approachable.
· But for many shops, even the Starter framework is too much.
· So to shorten and focus this presentation, and for those shops which only need instrumentation for a single schema, I simplified the Starter framework even further.
· In the time that remains to us, we will walk through the Simple Starter framework, how to install and use it. Although this paper will demonstrate only one framework, it is hoped the reader will evaluate the other libraries for their merits and catch the vision of how easy it is to use any of them to add maturity and maintainability to applications.

	21
· So for those shops that don’t need to share the framework across schemas, or those that don’t mind having multiple copies (one in each schema), I simplified Starter even further, stripping it down to just the bare features needed to support instrumentation.
· There are only 4 tables now, and four major services.

It comes with a few other libraries which it requires to function, but really one only need worry about the items in red to be instrumenting code in short order.

A few quick notes about the four major libraries.
	22
· Start and stop multiple timers. Each has a different name. They can be nested. In a hurry, can even start a timer with no name, but there can only be one of those.
· Log the response times measured.

· Create automation to mine the metrics, learning about your business from them, then notifying upon anomaly detection.

	23
· Info, warn and err are permanently enabled. Info for metrics and information you always want recorded. Warn for conditions that are notable, but whose investigation can probably wait a few hours. Err for unexpected conditions, where processing must halt, exceptions logged and handled, and transaction rolled back.
· Dbg is disabled. Wrap code comments and runtime context. Enabled by changing Debug parameter in table, or overriding with set_dbg()
· Set_dbg useful for debugging during development where you control the test call, usually an anonymous pl/sql unit test. It overrides the debug setting in the parameter table and takes effect immediately.
	24
A quick note about the performance of 10, 000 messages sent to various destinations.

Now back to the other half of this presentation’s title, this is where dynamic debugging comes in.

	25
· Use these routines to put runtime context into the dynamic performance views. When things go wrong, you can immediately look at the session and SQL associated with the session to see exactly who is running it, where the code is currently at, and how much further it has to go.
· Setting the client_id has all sorts of good uses: basic audit, column-level audit, VPD, monitor and trace, etc.

All right. Let’s go get it, install it and start using it!
	26
· Let us not be satisfied with code and systems as they are normally put together, with zero insight into the inner workings of the contraption.
· Unlike the cost difference between the homemade go-cart and the Ferrari here, your code can actually resemble the latter with minimal effort.

	27
· Instrumentation can be seen as time-consuming and a chore, but the payback is enormous when things go wrong, as they sometimes do. Instrumented code is easy to measure, tune and troubleshoot. When called upon, it can provide all the information needed to easily diagnose performance, security or functional problems.
	

