CREATE OR REPLACE PACKAGE logs
 AUTHID CURRENT_USER
/***
%author
Bill Coulam (bcoulam@dbartisans.com)

 A collection of routines responsible for logging messages to some output
 device, be it the screen, a file and/or a logging table. Where messages are
 directed depends upon the targets specified in the "Default Log Targets"
 parameter (see usage and notes for further info).

%usage
 The most simple and common use of this package is to call logs.dbg() to comment
 AND instrument your code, logs.msg() whenever you want to record something
 important, and logs.err() when you need to record context of variables and
 database state when exceptions are trapped and handled.

 <code>
 logs.dbg('Attempting to open file '||l_file_nm);
 ...
 logs.msg('Daily refresh started at '||dt.get_systs);
 ...
 logs.err('Request on pipe '||l_pipe_nm||' timed out.');

 However, this API is rather flexible and provides the parameters and overloaded
 routines needed to handle most any typical logging requirement.

 If you wish logging to be directed at the filesystem, you must set up a few
 parameters in the framework's parameter structures (APP_PARM, APP_ENV_PARM).
 The parameters required for a file destination are "Default Log File Directory"
 and "Default IO File Name".

%note
 Logging to the screen and logging table can only be turned on or off, not
 redirected somewhere else. Of the three logging targets, only file logging can
 be redirected to a specific directory and/or file. To explicitly change the
 logging directory, change the value of the "Default Log File Directory"
 parameter. To change the logging file name, change the value of the
 "Default IO File Name" parameter. Or, you can dynamically change either or both
 by using logs.set_file_parms(), logs.set_file_dir() and/or logs.set_file_nm()
 for the session.

 By default, messages to logs.dbg() are suppressed. If you wish these to
 begin appearing in your logging targets, you must change the value of the
 "Debug" parameter in APP_ENV_PARM. If you are writing unit tests or trying to
 replicate a bug using a PL/SQL client or test harness, you can bypass the
 table-based debug toggle altogether and override current debug settings by
 calling set_dbg(TRUE).

 The name of this package should have been LOG, but LOG is an Oracle keyword,
 so I had to use a plural noun, instead of the active verb like I was hoping,
 otherwise various PL/SQL programming editors would uppercase the word "log"
 every time you tried to call this package, which is opposite to the keyword
 case style rule of most shops.

%design
 PRIMARY USE OF LOGS
 The three primary log routines dbg(), msg() and err() are meant to handle all
 verbose debugging output, application logging and error recording. But one
 can also use warn() and info() which wrap msg(), making informational and
 warning messages easier to send.

 LOGGING CONTENT TYPE
 Application messages can be debug, exception/error, informational and warning
 messages (see the CNST package for the message type code constants). I refer
 to informational and warning messages as "application logging."

 Application Logging
 Application logging generally involves recording useful processing status
 and context, audit trail data, records handled, before and after control
 states, etc. Use logs.msg() with severity of cnst.INFO, or use logs.info()
 to do application logging.

 Error Logging
 Error logging involves recording variable state and parameter context at the
 time and point of error. Use logs.msg() with severity of cnst.ERROR, or use
 logs.err() to do error logging.

 Warnings
 There are also warning messages that fall somewhere between application
 logging and error handling. They are worrisome conditions that someone should
 look at within the next few hours or days to determine if there is something
 more sinister going on that warrants deeper attention. Use logs.msg() with
 severity of cnst.WARN, or use logs.warn() to send warnings.

 Debug Logging
 Debugging messages contain detailed, low-level context that only a programmer
 would appreciate, so they can quickly see exactly which paths a program took
 and what happened at each step along the way. Use logs.dbg() for these. Use
 logs.dbg() liberally so that when the inevitable production bug pops up, it is
 trivial to turn on debugging (%see logs.dbg below) and immediately see where
 things went wrong.

 SUGGESTED LOG TARGETS
 In development the targets could be set to the screen and table, both readily
 useable. In testing, since little will be tested with SQL*Plus, logging to the
 screen will usually be turned off. In production, logs are sent to either the
 log table or a file, but not both (too many moving parts to manage/monitor),
 and never to the screen. I prefer to table since it is readily available for
 query, mining and reporting.

%future
 Might add the ability to send output to a named pipe, so that a 3GL application
 could provide a constant monitor into database messages.

<pre>
Artisan Date Comments
============ ========= ==
bcoulam 1997Dec30 Creation
bcoulam 2008Feb08 Refactored heavily from the msg package.
bcoulam 2008Mar10 Added explicit getters and setters for directory and log
 file access.
bcoulam 2008May15 Added line number as an optional parameter to most logging
 routines.
bcoulam 2008May20 Added fine-grained filters to debug mode, so debug logs
 only get written for certain packages, session or user.

<i>
 __________________________ LGPL License ____________________________
 Copyright (C) 1997-2008 Bill Coulam

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

***/
AS

--
-- PUBLIC CURSORS
--

--
-- PUBLIC TYPES
--

--
-- PUBLIC CONSTANTS, VARIABLES, EXCEPTIONS, ETC.
--
TARGET_SCREEN CONSTANT VARCHAR2(10) := 'Screen';
TARGET_FILE CONSTANT VARCHAR2(10) := 'File';
TARGET_TABLE CONSTANT VARCHAR2(10) := 'Table';
--TARGET_PIPE CONSTANT VARCHAR2(10) := 'Pipe';
DEBUG_PARM_NM CONSTANT app_parm.parm_nm%TYPE := 'Debug';

--
-- PUBLIC FUNCTIONS
--

/**---
get_targets:
 Returns the current target(s) receiving output as a delimited string (useful
 when debugging the operations of the LOGS routines).
--*/
FUNCTION get_targets RETURN VARCHAR2;

/**---
get_log_dir:
 Returns the name of the directory being used as the destination for file logs.
 If the caller has not explicitly set the directory using set_log_dir() or
 set_log_parms(), this will be the directory specified by the
 "Default Log File Directory" parameter.
--*/
FUNCTION get_log_dir RETURN VARCHAR2;

/**---
get_log_nm:
 Returns the name of the logging file. If the caller has not designated a
 specific file name via set_log_nm() or set_log_parms(), this will return the
 Default IO File Name (see io.get_default_filename).
--*/
FUNCTION get_log_nm RETURN VARCHAR2;

/**---
get_log_path:
 Returns the full path and name of the logging file. If the caller has not
 designated a specific file via set_log_nm() or set_log_parms(), this will amount
 to the default directory path and default file name.
--*/
FUNCTION get_log_path RETURN VARCHAR2;

--
-- PUBLIC PROCEDURES
--

/**---
set_targets:
 Routine meant to temporarily (for this session) override the default log
 destinations specified by the parameter "Default Log Targets".

%design
 Logging can be routed to stdout, the APP_LOG table, a log file, all three, or
 any combination. The default logging destinations are controlled by a record
 named "Default Log Targets" in APP_PARM and APP_ENV_PARM. You should create a
 "Default Log Targets" record in these tables for each environment. The parm_val
 for "Default Log Targets" should adhere to this scheme:

 "Screen=Y|N,Table=Y|N,File=Y|N"

 You would only call this routine, logs.set_targets(), if you need to
 temporarily override the defaults set by that parameter.

 If set_targets isn't called AND "Default Log Targets" isn't configured, all
 logging will default to the table target (APP_LOG).

 If you set the file toggle to TRUE, the filename will default to what is
 specified by the "Default IO File Name" parameter that should have already been
 set up for the IO package. If you wish the log file name to be different from
 the default you should use logs.set_log_nm() to change it. This will remain in
 effect for the session.

 One call at the top of the driving procedure to set_targets() is usually
 sufficient. If, in the middle of your code you have a special block that
 needs to go to a different target than that set for the rest of the session,
 you may call logs.to_table() or logs.to_file() directly.

%usage
 <code>
 BEGIN

 logs.set_targets(FALSE,TRUE,TRUE);

 -- OR optionally use named notation, like so:

 logs.set_targets(
 i_stdout => FALSE
 , i_table => TRUE
);

 io.p(... -- ignores targets, goes to screen
 logs.dbg(... -- uses targets if debug toggle is turned on
 logs.msg(... -- uses targets

 END;
 <code>

%param i_stdout TRUE means log messages will be routed to the screen (via io.p).
%param i_table TRUE means log messages will be routed to the APP_LOG table.
%param i_file TRUE means log messages will be routed to a file.
--*/
PROCEDURE set_targets
(
 i_stdout IN BOOLEAN DEFAULT FALSE,
 i_table IN BOOLEAN DEFAULT FALSE,
 i_file IN BOOLEAN DEFAULT FALSE
);

/**---
set_log_parms:
 Sets the target directory and/or file name for all logging. This directory and
 file name are set system-wide by the "Default Log File Directory" and
 "Default IO File Name" parameters seen in APP_PARM_VW. If you wish them to be
 other than the default, call this routine to change one, or the other, or both
 explicitly. If you leave either of the parameters blank, the default will be
 used instead.

%param i_file_dir The name of the directory where you wish log files to be
 written if different than the default.
%param i_file_nm The name of the file if you wish the logging to go to a file
 named other than the default.
--*/
PROCEDURE set_log_parms
(
 i_file_dir IN VARCHAR2 DEFAULT io.get_default_filename,
 i_file_nm IN VARCHAR2 DEFAULT io.get_default_dir
);

/**---
set_log_dir:
 Sets the target directory for all logging, overriding the directory indicated by
 the system-wide "Default Log File Directory" parameter.

%param i_file_dir The name of the logging directory (should match the name of
 an Oracle directory object).
--*/
PROCEDURE set_log_dir(i_file_dir IN VARCHAR2);

/**---
set_log_nm:
 Sets the target file name for all logging, overriding the fiel name indicated
 by the system-wide "Default IO File Name" parameter.

%param i_file_nm The name of the logging file.
--*/
PROCEDURE set_log_nm(i_file_nm IN VARCHAR2);

/**---
set_dbg:
 Toggles the state of debugging for the current session in which it is called.
 This method of turning on debugging is really meant only for development where
 unit tests are being conducted through SQL*Plus scripts. If you need to turn
 debugging on in production, use the "Debug" parameter in APP_ENV_PARM.
 %see logs.dbg() for further info on the dynamic debug toggle.

 set_dbg(BOOLEAN) is meant for SQL*Plus and PL/SQL-fluent callers.
 TRUE turns debugging on
 FALSE turns it off

 set_dbg(VARCHAR2) is meant for non-Oracle speakers, like Java and other layers
 in the application stack that might need to persist debugging messages.
 'all','on','y','yes','true' all turn debugging on
 'none','off','n','no','false' all turn debugging off
 'session=','unit=','user=' will filter debugging (%see logs.dbg for explanation)

%usage
 Developer logs into SQL*Plus or writes an anonymous block. In either
 case, the developer calls logs.set_dbg(TRUE);

 Then from the same session or PL/SQL block, the developer runs the desired
 PL/SQL routine.

 Any calls to logs.dbg in the underlying layers will then be routed to the
 target(s) set either through the "Default Log Targets" parameter in
 APP_ENV_PARM, or through the set_targets overriding routine. If you do not set
 any logging targets for the session through either method, then all debugging
 will default to being routed to the APP_LOG table.

%param i_dbg_val Meant for non-PL/SQL callers.
 {*} 'all','on','y','yes','true' all turn debugging on
 {*} 'none','off','n','no','false' all turn debugging off
 {*} 'session=','unit=','user=' will filter debugging (%see logs.dbg for explanation)
%param i_state Meant for SQL*Plus and PL/SQL-fluent callers.
 {*} TRUE turns debugging on
 {*} FALSE turns it off
--*/
PROCEDURE set_dbg (i_dbg_val IN VARCHAR2);
PROCEDURE set_dbg (i_state IN BOOLEAN);

/**---
msg:
 Call this version of msg() when you have a named, pre-built message in APP_MSG
 to call upon. Pass the message code (app_msg.msg_cd) and leave the i_msg
 parameter blank; this will be filled in for you as the framework looks up the
 message based on the message code. Ensure you let msg() know what type of
 message you want logged (%see cnst.DEBUG, cnst.INFO, cnst.WARN and cnst.ERROR).

 If are inventing a one-off message on the spot, you may pass
 any short string, name or identifier you wish for the message code AND a
 message. You might use msgs.DEFAULT_MSG_CD for your ad-hoc message code. If the
 i_msg parameter is filled, log will not bother to look up the code in app_msg.

 All three msg() routines are built to be used within exception handlers. If
 you just want the message to be logged, leave the i_reraise parameter blank. If
 you want to halt processing, set i_reraise to TRUE. For example, wrap your
 PL/SQL in a sub-block and give it its own exception block. This allows you to
 trap errors, log them if you wish and continue with the next statement or
 iteration, e.g.
 Remember to explicitly pass in ERROR or WARN for the severity. If you don't, your
 exceptions will default to INFO messages and won't be picked up by the log-
 scanning application. The log-scanning app does not come with the framework. It
 must be custom-built per each shop's needs. It is usually implemented as a cron
 or scheduled Oracle job that reads through the latest N minutes of APP_LOG
 records, recording the last-scanned timestamp somewhere. It then emails certain
 people or groups with high-severity errors so that issues in production can be
 proactively detected and sometimes handled before the end users even notice or
 report them.

%design
 I was unable to give i_sev_cd a default. By doing so, the 1st and 3rd overloads
 of msg() conflicted. They would compile, but would conflict at runtime.

%usage
 <code>
 --- simple use of logs.msg (3rd overload)
 logs.msg('Parameter was '||l_length||' characters long. Must be 500 or less.');
 -- better use, inventing message on the spot
 logs.msg('Invalid Parameter', cnst.ERROR, 'Parameter must be 500 characters or less');
 -- even better use of the canned messages in APP_MSG
 logs.msg('Invalid Parameter', cnst.ERROR);
 -- best use of LOGS and parameterized canned messages in APP_MSG
 logs.msg('Invalid Parameter', cnst.ERROR,
 msgs.fill_msg('Invalid Parameter', 'i_copyright', '500'));

 BEGIN
 -- do some stuff, probably start a loop
 FOR i in ...
 BEGIN -- begin sub-block
 ... do more stuff
 EXCEPTION
 WHEN lx_whatever THEN
 logs.msg('Invalid Product', cnst.WARN);
 WHEN DUP_VAL_ON_INDEX THEN
 logs.msg(c.DEFAULT_MSG_CD, cnst.ERROR,
 'That row is already in '||l_table, TRUE);
 WHEN OTHERS THEN
 logs.err(TRUE);
 END; -- end sub-block

 END; -- end outer block
 </code>

%future
 Add parameterized versions of logs.msg to match the signature of msgs.fill_msg
 so that msgs.fill_msg does not need to be called explicitly. It could then be
 called implicitly by logs.msg when it detects parameters are being fed to it
 to replaced placeholders in the canned message.

%param i_msg_cd Named message, found in APP_MSG table. You can also invent one
 on the spot, like "My Awesome Message", or use the default Ad-Hoc
 Message code found in msgs.DEFAULT_MSG_CD.
%param i_sev_cd Message severity. cnst.ERROR, cnst.WARN, cnst.INFO, cnst.DEBUG
%param i_msg Error/Application message. Will be truncated if longer than 32K.
%param i_reraise TRUE or FALSE. Whether you want the exception raised again
 (which will halt most programs unless they have a higher-level
 exception handler).
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE msg
(
 i_msg_cd IN app_log.msg_cd%TYPE,
 i_sev_cd IN app_log.sev_cd%TYPE,
 i_msg IN VARCHAR2 DEFAULT NULL,
 i_reraise IN BOOLEAN DEFAULT FALSE,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
msg:
 This version of msg() is primarily used in exception handlers when dealing with
 built-in or application-specific error codes. The Core framework provides a way
 to associate error IDs with each standard message (%see APP_MSG). However, it is
 much easier, and recommended, to mainly deal with and code to the message code,
 not the numeric identifier.

 Do not call RAISE_APPLICATION_ERROR explicitly. Use this version of logs.msg()
 instead. If reraise is TRUE and the ID is positive (from APP_MSG or invented
 ad-hoc), or if the ID is in the -20000 to -20999 range, RAISE_APPLICATION_ERROR
 will be called for you after logging the message.

 Remember to explicitly pass in ERROR or WARN for the severity. If you don't, your
 exceptions will default to INFO messages and won't be picked up by the log-
 scanning application. The log-scanning app does not come with the framework. It
 must be custom-built per each shop's needs. It is usually implemented as a cron
 or scheduled Oracle job that reads through the latest N minutes of APP_LOG
 records, recording the last-scanned timestamp somewhere. It then emails certain
 people or groups with high-severity errors so that issues in production can be
 proactively detected and sometimes handled before the end users even notice or
 report them.

%usage
 <code>
 EXCEPTION
 WHEN excp.gx_row_locked THEN
 -- This example uses SQLCODE, but substitutes a contextual message
 -- then proceeds with processing
 logs.msg(SQLCODE, cnst.INFO, 'Another session has item'||l_item_id||' locked.');
 WHEN lx_control_violation THEN
 -- This example uses a programmer-defined error ID, raising an error
 -- to the GUI
 logs.msg(-20001, cnst.WARN, 'The number of records processed does not equal
 the number of records input.', TRUE);
 WHEN OTHERS THEN
 -- This example uses the err() incarnation of msg which
 -- automatically logs an ERROR-level SQLERRM and re-raises the exception.
 logs.err;
 </code>

%param i_msg_id Positive or negative error number, either from APP_MSG or from
 list of Oracle error num.
%param i_sev_cd Message severity. cnst.ERROR, cnst.WARN, cnst.INFO, cnst.DEBUG
%param i_msg Error/Application message. Will be truncated to 32K if longer.
%param i_reraise TRUE or FALSE. Whether you want the exception raised again
 (which will halt most programs unless they have a higher-level
 exception handler).
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE msg
(
 i_msg_id IN app_msg.msg_id%TYPE,
 i_sev_cd IN VARCHAR2,
 i_msg IN VARCHAR2 DEFAULT NULL,
 i_reraise IN BOOLEAN DEFAULT FALSE,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
msg:
 This version of msg is provided to allow very quick and easy additions to the
 log targets. Any calls to this version of log will have the severity defaulted
 to INFO, the msg code to "Ad-Hoc Msg", and the routine to Unknown if it can't
 be determined from the call stack.

 This version of msg is especially helpful for quick-and-dirty debugging during
 development when lots of errors are causing rollbacks, and you wish to see
 what is going on, by taking advantage of the autonomous transactions that the
 LOGS routines provide.

%param i_msg Error/Application message. Will be truncated to 32K if longer.
--*/
PROCEDURE msg(i_msg IN VARCHAR2);

/**---
err:
 This barebones version of err() will automatically fill the msg with SQLERRM
 before logging to the targets. It is primarily used in rare (should be outlawed)
 WHEN OTHERS sections.

%param i_reraise Defaults to TRUE, which will raise an error after logging the
 message. If you wish to prevent the program from halting its
 processing, you will need an exception handler, pass FALSE in
 this parameter to keep the exception from raising.
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE err
(
 i_reraise IN BOOLEAN DEFAULT TRUE,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
err:
 This version of err is a lazy way of calling logs.msg, as it automatically
 assumes a sev_cd of ERROR and dispenses with standard message codes.

%param i_msg A message about the detected error and its context. Will be sent
 to the log targets.
%param i_reraise Defaults to TRUE, which will raise an error after logging the
 message. If you wish to prevent the program from halting its
 processing, you will need an exception handler, pass FALSE in
 this parameter to keep the exception from raising.
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE err
(
 i_msg IN VARCHAR2,
 i_reraise IN BOOLEAN DEFAULT TRUE,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
warn:
 warn() is a lazy way of calling logs.msg, as it automatically
 assumes a sev_cd of WARN and dispenses with standard message codes.

%param i_msg The warning you wish to record and its context, which will be sent
 to the log targets.
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE warn
(
 i_msg IN VARCHAR2,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
info:
 info() is a lazy way of calling logs.msg, as it automatically assumes a
 severity of INFO and dispenses with standard message codes.

%param i_msg The information or notes you wish to record, which will be sent
 to the log targets.
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE info
(
 i_msg IN VARCHAR2,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

/**---
dbg:
 Logs debug messages. Enables dynamic "peeking" into the workings and context of
 routines without having to attach a debugger, take downtime, recompile code,
 etc. Simply pass a detailed, formatted message in the first parameter. The
 routine name and line number from which logs.dbg() was called will be found
 transparently, unless you choose to pass in the routine and line number
 explicitly.

%design
 Know that the various logs.msg routines are meant for error_handling and logging
 that should always be on. Calls to the logs.dbg routine are transient. They will
 only log output when debugging is turned on either by parameter or by override
 (see below). If debugging has been switched on, the debug message will be
 written to the targets you set by parameter or override (%see set_targets).

 TURNING ON DEBUG MODE BY PARAMETER
 In APP_PARM is a shared parameter named "Debug". Its value in APP_ENV_PARM for
 a given application and environment follows the syntax:
 off|all|session=<session_id>|unit=<pkg1[,proc1,trigger1,etc...]>|user=<client_id>

 This means there are four "filters" that can be applied to debug logging:
 1) all = log all calls to logs.dbg().
 2) session = log any calls to logs.dbg() that belong to the given session ID.
 3) unit = log any calls to logs.dbg() that come from the given PL/SQL unit(s).
 4) user = log any calls to logs.dbg() attributed to the given client identifier.
 and of course
 5) off = all calls to logs.dbg() will be ignored.

 Filters for all, session and user are single-valued. They can't be combined and
 they can only have one value. The only filter that is multi-valued is unit.
 If you want to show dbg() calls coming out of more than one package, just write
 a comma or space-delimited list of package names in the parm_val column for parameter
 "Debug". Here are examples of app_env_parm.parm_val values for parameter "Debug":

 off
 all
 session=18
 unit=DRIVER, DAILY_LOAD_PKG, GIS_MAP_PKG, AIUD_REF_TRG
 user=doejohn

 When done capturing debug messages for your filter, be sure to update parm_val
 back to off.

 TURNING ON DEBUG MODE BY OVERRIDE
 %see set_dbg. Just call set_dbg('on') or set_dbg(TRUE) to turn debugging on
 for your current session. This is usually only used by anonymous PL/SQL blocks
 or SQL*Plus scripts in unit test harnesses.

 DEBUG CHECK INTERVAL
 This was designed to not impose unecessary overhead in environments with heavy
 transaction/record processing. So rather than checking the parameters for an
 updated Debug value on every call of logs.dbg(), it only checks every N minutes,
 N being another configurable parameter, specified by the value of the
 "Debug Toggle Check Interval", which defaults to checking every minute if not
 configured.

 This means that you cannot turn debug mode on and expect immediate output.
 When you discover a session, PL/SQL unit or user that requires a look into the
 debug logs of their process, turn on debug mode using the value in APP_ENV_PARM
 as outlined above, then wait the N minutes before you inform the user they can
 try again. At that point, you should be able to monitor the new data in APP_LOG
 or the logging file to see the new debug data.

 This polling, table-based design allows you to leave your logs.dbg() calls
 peppered throughout your code. There is no need to comment them out or use 10g
 conditional compilation syntax to hide them for production. Since we are often
 verbose and detailed in debugging/info messages, this is a great way of
 documenting the code as well.

 DESIGN ALTERNATIVES REJECTED
 We rejected the option of checking the parameter table upon every call to
 logs.dbg(). We felt this was simply too much overhead for most systems'
 performance goals.

 We were forced to reject the idea of using global application contexts,
 dbms_pipe or dbms_alert, as all these mechanisms do not work at all, or well,
 in Oracle RAC clusters.

%param i_msg Fully formatted debug message. The format is up to the user of the
 framework.
%param i_routine_nm This will be determined automatically for you. Only pass
 this if you want to record a source name different than
 what the call stack says. If you do pass this in, it is
 usually the package.routine where the message came from.
 Could be the name of a trigger, object method, type body, etc.
%param i_line_num This will be determined automatically for you. Only pass this
 in if you want to record a line number for the debug message
 that is different from the line on which logs.dbg is called.
--*/
PROCEDURE dbg
(
 i_msg IN app_log.log_txt%TYPE,
 i_routine_nm IN app_log.routine_nm%TYPE DEFAULT NULL,
 i_line_num IN app_log.line_num%TYPE DEFAULT NULL
);

END logs;
