Oracle Streams AQ

Lessons From the Trenc

Should I Slip Out?

 Brief into to asynchronous processing

* Brief history, overview of Oracle Streams AQ

» Will dive deeply into single-consumer queues

e Will cover real-world traps encountered and their
solutions

* No time spent on multiple-consumer queues or
esoteric corners of AQ

» So this session is for novice and intermediate AQ
user and DBA (should be PL/SQL literate)

Agenda

e Asynchronous Processing vs. Synchronous

* Middleware
* CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
= History and Features
= Setup
* Design
* Create
= Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

Synchronous Processing

* Typical communication model employed in most
programming languages
e Call and wait

= Similar to live, interactive phone call

e Structured
= Routine A calls Routine B, which queries the database and
returns control to Routine A

* OO
* ObjectA.method1 sends a message to an ObjectB.methods,
which inspects the data it controls, and returns an answer to
ObjectA

Synchronous Processing

System . System
Package o MEREEREE, | Package

Module request Module
Object
Routine

Object
Routine
A B

response

Problems with Syncronous

Dependencies on undependable things
* Length of execution
* Uncertainty of completion

Event-driven processes

= Sensitive to response time
Transaction management

* Lost work if trouble on other end

Resource usage
* Idle time, resources wasted while waiting (either end)

Asynchronous Processing

e No hard link to the remote resource

» Leave message and hang-up
= Callee will return call when they can
* Similar to leaving a message in voicemail

e Structured and OO Programming;:
* Client sends message and goes on with life
* Message receiver eventually processes the message and leaves
a message for the client in return.

e Great for things like workflows, publish/subscribe
communication/notification, progress meters, email
handlers and more.

Asynchronous Processing

transaction

s e» aE» o a o o

System message J System
HEUCIC — — — — — = = — — Package
Co)¥ Module

Module

Sar-
-

Object transaction Object

Routine e Routine
A message B

Asynchronous Processing

e Other end can be slow, undependable; no longer
affects our end

e Event-driven processes
* Now have the appearance of responsiveness as work was
delegated

e Transaction management
* Previous work retained if other end fails

e Resource usage
= Resources efficiently utilized

Agenda

e Asynchronous Processing vs. Synchronous

e Middleware
= CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
= History and Features
= Setup
* Design
* Create
= Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

Middleware

e CPI-C
= Common Programming Interface for Communication
= Older. Mainframe and minis. MVS, OS/400, OS/2

* RPC

= Remote Procedure Call
= O0: Known as remote invocation
= Slightly less old. Unix, Microsoft, CORBA, others

e MOM

* Message Oriented Middleware
= Newer. Many vendors and flavors and implementations

= MQM is most popular flavor of MOM
* Message Queuing Middleware

Agenda

e Asynchronous Processing vs. Synchronous

* Middleware
* CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
= History and Features
= Setup
* Design
* Create
= Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

Oracle Streams AQ

* Oracle’s MQM solution
* Implemented using... what else?...the Oracle database
* Inherits the security, backup, transactional integrity, scheduling
and other benefits of using the world’s best database

* Oracle Advanced Queuing (8.0)
* Queue Monitor processes (ora_gmn_* processes)
= Job_queue processes manually set

 Oracle Streams AQ (10.1)

* Queue Monitor Coordinator (ora_gmnc_* processes)
= Automatically adjusted

Oracle Streams AQ

 Single-consumer queues

e Multi-consumer queues (for pub/sub)

* Non-persistent messages (now called buffered)

e Message ordering, prioritization, grouping, navigation,
selection, inspection, delay, retention, and expiration
e SQL-based access to queue, message metadata,
message payload

 Various interfaces including PL/SQL, C++ and Java

» Rich payload typing model. Scalar, user-defined and
XML.

» Much, much more

Agenda

e Asynchronous Processing vs. Synchronous

* Middleware
* CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
= History and Features
" Setup
= Design
* Create
= Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

AQ Setup

* AQ already installed and free to use

» As DBA...

* QSCHEMA wants to create a queue
GRANT EXECUTE ON sys.dbms agadm TO QSCHEMA;
GRANT EXECUTE ON sys.dbms ag TO QSCHEMA;

* CUSTSCHEMA wants to enqueue
GRANT EXECUTE ON sys.dbms ag TO CUSTSCHEMA;
= CLIENTSCHEMA wants to dequeue
GRANT EXECUTE ON sys.dbms ag TO CLIENTSCHEMA;

* If app/svc connected to CLIENTSCHEMA will use JMS
GRANT EXECUTE ON sys.dbms agin TO CLIENTSCHEMA;
GRANT EXECUTE ON sys.dbms agjms TO CLIENTSCHEMA;

Design

e Design message payload
= |dentifiers
= Content and format

o De51gn queue
= Payload type?
= How many messages per minute/hour/day? Spikes?
= Multiple clients allowed to pull the message?
= How to handle errors? Notify anyone?
= Retries allowed? How many?
= Delay needed to fix problems?
* Is Oracle RAC involved?
* Need to browse or inspect messages?
* Grouping, sorting, tagging, priority needed?

Create

(as QSCHEMA)

1. Create queue table

2. Create queue

3. Start queue

4. Grant enqueue/dequeue permissions

SET SERVEROUTPUT ON

1 queue name VARCHAR2 (30) := 'MY Q';

1 gqueue table name VARCHAR2 (30) := 'MY SOT';

1x queue is not EXCEPTION;

1x queue_ running EXCEPTION;

1x queue tab is not EXCEPTION;

PRAGMA EXCEPTION INIT (lx queue is not,-24010);
PRAGMA EXCEPTION_ INIT (1x queue running,-24011);

PRAGMA EXCEPTION_INIT (1x queue tab is not,-24002);

dbms agadm.drop queue (queue name => 1 queue name) ;
EXCEPTION B B B B
WHEN 1x queue is not THEN
dbms_output.put line(l queue name||' does not exist. Check spelling.');
WHEN 1x queue running THEN
dbms_output.put line('Stopping '| |l queue name);
dbms_agadm.stop_gqueue (queue_name => 1 queue_name) ;
dbms output.put line('Dropping '| |l queue name);
dbms_agadm.drop queue (queue name => 1 gqueue name) ;
END;
BEGIN
dbms agadm.drop queue table (queue table => 1 queue table name, force=>TRUE) ;
EXCEPTION
WHEN lx queue tab is not THEN
dbms_output.put line(l queue table name||' does not exist. Check spelling.');
END;
ND;

: Queue

eue table

BEGIN
dbms output.put line('Creating MY SQT'");
dbms agadm.create queue table(
queue table => 'MY SQT'
, queue payload type => 'SYS.AQS JMS MESSAGE'
, Storage clause => 'PCTFREE 0 PCTUSED 99'
,multiple consumers => FALSE
, comment => 'My Queue Table: Supports the blah,
blah...");

1e and start it
ed to 24 characters

BEGIN
dbms output.put line('Creating MY Q'");
dbms agadm.create queue (
queue name => 'MY Q'
,queue table => 'MY SQT'
, comment => 'My Queue: Routes the messages
from...");

dbms agadm.start queue (queue name=>'MY Q') ;
END;

Create

e That’s it! You now have a running queue, waiting for

messages.
* |In addition, Oracle created two “hidden” views on

top of your queue table:

* AQSqueue_table

* Very useful for monitoring and maintenance

* Nice to grant to schemas and roles that need to peer into queue
* AQS$queue table F

= Not sure why it exists... yet. No documentation.

ns must be granted.

BEGIN
dbms output.put line('Granting enqueue privs');
dbms agadm.grant queue privilege (
privilege => 'ENQUEUE' -- also DEQUEUE or ALL
,queue name => 'MY Q'
,grantee => 'CUSTSCHEMA'
,grant option => FALSE) ;
END;

BEGIN
dbms output.put line('Granting dequeue privs');
dbms agadm.grant queue privilege (
privilege => 'DEQUEUE"
, queue name => 'MY Q'
,grantee => 'CLIENTSCHEMA'
,grant option => FALSE);
END;

Use: Enqueue

* Now use the appropriate programmatic interface to
engueue or dequeue
» PL/SQL example (as CUSTSCHEMA):

DECLARE
1 msg sys.aq$ jms message;
1 queue options dbms ag.enqueue options t;
1l msg props dbms ag.message properties t;
1 msg_id RAW (16) ; a B
BEGIN
1 msg :=

sys.ag$ jms message.construct (dbms agjms.jms text message);
1 msg.set text('<useful message here>'");
dbms ag.enqueue (
queue name
,enqueue options
,message properties

Vv

"QSCHEMA.MY Q'
1 queue options
> 1 msg_props

I T
\Y

,payload > 1 msg
,msgid => 1 msg_id);
COMMIT; -- very important; won't enqueue without commit

END;

Use: Dequeue

e Pulls the first message off the queue by default
e Many modes and options and design decisions here
* By query, by identifiers, by grouping, browse mode, etc.

e Will rarely see messages in the queue table

* Unless dequeue transaction is failing
= Or sender requested a dequeue delay
= Or table created with retry delay value

* Messages will be READY, PROCESSED or EXPIRED
e Dequeue request is a blocking operation

DECLARE
1 msg sys.adq$_ jms message;
1 msg text VARCHAR2 (100) ;
1 gueue options dbms ag.dequeue options t;
1 msg props dbms ag.message properties t;
1 msg id RAW(106) ;
BEGIN

dbms_aqg.dequeue (
queue name => 'QSCHEMA.MY Q'
,dequeue options => 1 queue options
,message_properties => 1 msg props
,payload => 1 msg
,msgid => 1 msg id);

1 msg.get text(l msg text);
dbms output.put line ('Dequeued message text:
CHR(10) || 1 msg text);
COMMIT;
END;

Agenda

e Asynchronous Processing vs. Synchronous

* Middleware
* CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
* History and Features
= Setup
= Design
* Create
* Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

Maintaining a Queue

e Queues and queue tables are self-maintaining
* You can stop a queue and alter it
e Administer through OEM and DBMS_AQADM

» Will generally be empty, unless nothing is
dequeuing, or dequeue transactions are failing

* [f not empty, the system doing the dequeue must
be investigated, not the queue

Troubleshooting a Queue

e Useful message metadata in AQs$queue_table view
= Can query, but cannot perform DML on the queue table

SELECT queue SELECT t.gueue

,eng_timestamp ,t.eng timestamp

,eng_user id ,t.eng user id

,msg_ state ,t.msg state

,retry count ;t.retry count

,origina}_queue_name ,t.original gqueue name

,expiration_reason ,t.expiration reason

,user_data —-— good to convert i1f message 1s numeric

FROM ag$my sgt t , TO_NUMBER (t.user data.text vc) customer id

ORDER BY 2 DESC; FROM agS$my_ sgt t

ORDER BY 2 DESC;

» Oracle data dictionary queue views, like [G]V$AQ,
user/all/dba queues and user/all/dba_queue tables

SELECT dg.owner
, dg.name
,dg.queue type
: _
r9-
FROM gv$aq g
JOIN dba queues dg
ON dg.gid = g.qgid;

Troubleshooting a Queue

e Expired or failed messages moved to the exception
queue, a queue table created by Oracle and named
AQsqueue table E

e Cannot enqueue directly to exception queue

e But can dequeue from it, allowing one to re-process

or re-enqueue failed messages
* Must formally “start” it and enable dequeuing

BEGIN
-— Start the default exception queue as well so we can dequeue from it.
dbms_output.put line('Starting AQS MY SQT E exception Q");
dbms agadm.start queue (queue name => 'AQS MY SQT E', enqueue => FALSE, dequeue => TRUE);

END;

» After that, the queue table view can tell us about

Troubleshooting a Queue

messages that are now in exception

* Using the query seen 2 slides ago:

QUEUE | ENQ_TIMESTAMP | ENGQ_USER_ID MSG_STATE RETRY_COUNT __| ORIGINAL_QUEUE_NAME EXPIRATION_REASON CUSTOMER_ID

1|SCRN_LSMR_Q 0 06-JAN-11 04.24.26.469421 PM ~ SCRN_PTC - READY] 312449
2] SCRMN_LSNR_Q *| 06-JAN-11 04.14.39.007230 PM — SCRN_PTC - READY] 330941
2 SCRMN_LSMNR_Q ' 06-JAN-11 01.26.39.578126 FM — SCRN_PTC T READY] 336028
4] SCRMN_LSNR_Q | 06-JAN-11 12.32. 44 070731 PM SCRN_PTC © READY] 344285
5| SCRM_LSNR_Q ' 06-JAN-11 12.05.35.649095 PM — SCRN_PTC T READY] 341867
_E'- SCRM_LSNR_Q | 06-JAN-11 11.33.36.130970 AM — SCRN_PTC T READY 1 341702
7] SCRMN_LSNR_Q | 06-JAN-11 11.26.18.746358 AM — SCRN_PTC - READY 1 282635
_SAQ$_SCRN_LSNR_SQT_E | 01-DEC-10 03.13.24 340569 PM | ICSAJA " EXPIRED 4 | SCRN_LSNR_Q " MAX_RETRY_EXCEEDED 3485627
EAQ!B_SCRN_LSNR_SQT_E * 08-NOV-10 03.23.52.487282 PM ' SCRN_PTC " EXPIRED 4 SCRN_LSNR_G MAX_RETRY_EXCEEDED 3456735

Troubleshooting a Queue

» Tried notify/fix on entry into exception queue. Fail.
e Prefer to trap, notify and fix problem messages during

the retry delay * max retries window

= We had the need to know about errors the second they happened.
* We attached an after update trigger to the queue table that looks for
any change in retry_count, and sends an email with message context.

CREATE OR REPLACE TRIGGER my sqgt au trg
AFTER UPDATE ON my sqt
FOR EACH ROW

DECLARE

BEGIN

IF (:old.retry count <> :new.retry count) THEN
my g mgr.handle retry(:old.user data.text vc);
END IF;

END my sqgt au trg;

* Created a package for this notification routine, and other common
queue-related operations.

Agenda

e Asynchronous Processing vs. Synchronous

* Middleware
* CPI-C, RPC, MOM
- MQM
e Oracle Streams AQ
* History and Features
= Setup
= Design
* Create
* Use (Enqueue and Dequeue)
= Maintain & Troubleshoot

e >> Hard Lessons <<

Hard Lessons
“Too Many Cooks in the Kitchen”

 Lots of developers running local Tomcat with copy
of the app, each with their own listener dequeuing
from the same queue on the shared Dev database.

» Random who ended up with the message

e Failures would retry the default 5 times < 1 second
and immediately go to exception. Default delay is 0
seconds. No time to diagnose. Frustrating.

» We bumped delay to 3600 seconds, and limited to 4
attempts: =% .. e

queue name => 'MY Q'
,max_retries => 4
,retry delay => 3600);

END; B

Hard Lessons

“Double the Fun!”’

» Basic tenet of queuing is that each message will be
processed once and only once. In 10.2.0.4, try twice and
often twice!

» Bug (5590163) in Oracle allows messages in our single-
consumer queue to be dequeued twice.

* Logs showed the two nodes of the app server each
dequeuing same message in same second.

» Processing didn’t see the other transaction, and tried to
create duplicate records in downstream system.

» AQ was acting like it had never heard of ACID
transactions.

e Oracle’s “fix” created bug 7393292. Truly fixed in
10.2.0.5?

Hard Lessons

“Crusty Queue”

e Our system dequeuing did too much: too many
queries and DML statements before deciding to finish
the transaction. Too much stuff to go wrong.

 Lots of errors during initial months of dev and
testing. Queue table became encrusted with old,
failed messages. Needed to clean it out.

e Purge with DBMS_AQADM interface:

DECLARE
1 purge opt dbms agadm.ag$ purge options t;
BEGIN
1 purge opt.block := TRUE;
dbms agadm.purge queue table (
queue table => 'MY SQT'
,purge condition => 'queue IN (''AQS MY SQT E'',''MY Q'")'
,purge options => 1 purge opt);
END; B B B

Hard Lessons

“Crusty Queue”

» Also possible to pinpoint the messages to remove
using the purge condition parameter, which operates
on the columns found in the queue table.

 Alias “gtview.” required for access to attributes of
the user data column.

DECLARE

1 purge opt dbms_agadm.aqg$ purge options_ t;
BEGIN
1 purge opt.block := FALSE; -- don't block enqueue or dequeue attempts (this is the default)
dbms agadm.purge queue table (
queue_table => 'MY SQT'
;purge condition => 'queue = ''MY Q'' AND gtview.user data.text vc = ''hello world'''
,purge options => 1 purge opt

)7
END;

Hard Lessons

“F view Fail”

 Different project got error on dequeue:

ORA-00942 table or view does not exist at this DBMS: sys.DBMS AQIN line 651

* Run as queue owner: Good

e Run as other schema accessing the queue: Error

e Had to run trace to find missing priv

e Found that if the system dequeues in BROWSE
mode, the queue owner must grant SELECT access on
the AQsqueue table F view to dequeuing schema.

Hard Lessons

“AQ$ JMS_ MESSAGE Massage”

e During upgrade project, half DBs 10g, other half 9i.
* Found that enqueue script written for 10g didn’t
work on 9i.

e Turns out AQs JMS MESSAGE has multiple
constructors in 10g, and only one in 9i.

* 9i version that takes an integer (message type
constants defined in DBMS_AQ package spec) worked
great on both versions.

* 10g constructors can accept a variable of the
message type, like SYS.AQs JMS TEXT MESSAGE,
but is more complex to use (3 more lines of code)

Questions?

yulam(@yahoo.com
p://www.dbartisans.com

pen Source PL/SQL “Starter’” Application Framework
http://plsqglframestart.sourceforge.net

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://plsqlframestart.sourceforge.net/

