
Lessons From the Trenches

 Brief into to asynchronous processing
 Brief history, overview of Oracle Streams AQ
 Will dive deeply into single-consumer queues
 Will cover real-world traps encountered and their
solutions
 No time spent on multiple-consumer queues or
esoteric corners of AQ
 So this session is for novice and intermediate AQ
user and DBA (should be PL/SQL literate)

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Typical communication model employed in most
programming languages
 Call and wait
 Similar to live, interactive phone call

 Structured
 Routine A calls Routine B, which queries the database and

returns control to Routine A

 OO
 ObjectA.method1 sends a message to an ObjectB.method3,

which inspects the data it controls, and returns an answer to
ObjectA

System
Package
Module
Object

Routine
A

System
Package
Module
Object

Routine
B

request

response

transaction

 Dependencies on undependable things
 Length of execution
 Uncertainty of completion

 Event-driven processes
 Sensitive to response time

 Transaction management
 Lost work if trouble on other end

 Resource usage
 Idle time, resources wasted while waiting (either end)

 No hard link to the remote resource
 Leave message and hang-up
 Callee will return call when they can
 Similar to leaving a message in voicemail

 Structured and OO Programming:
 Client sends message and goes on with life
 Message receiver eventually processes the message and leaves

a message for the client in return.

 Great for things like workflows, publish/subscribe
communication/notification, progress meters, email
handlers and more.

System
Package
Module
Object

Routine
A

System
Package
Module
Object

Routine
Bmessage

message

transaction

transaction

 Other end can be slow, undependable; no longer
affects our end
 Event-driven processes
 Now have the appearance of responsiveness as work was

delegated

 Transaction management
 Previous work retained if other end fails

 Resource usage
 Resources efficiently utilized

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 CPI-C
 Common Programming Interface for Communication
 Older. Mainframe and minis. MVS, OS/400, OS/2

 RPC
 Remote Procedure Call
 OO: Known as remote invocation
 Slightly less old. Unix, Microsoft, CORBA, others

 MOM
 Message Oriented Middleware
 Newer. Many vendors and flavors and implementations
 MQM is most popular flavor of MOM
 Message Queuing Middleware

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Oracle’s MQM solution
 Implemented using…what else?...the Oracle database
 Inherits the security, backup, transactional integrity, scheduling

and other benefits of using the world’s best database

 Oracle Advanced Queuing (8.0)
 Queue Monitor processes (ora_qmn_* processes)
 Job_queue_processes manually set

 Oracle Streams AQ (10.1)
 Queue Monitor Coordinator (ora_qmnc_* processes)
 Automatically adjusted

 Single-consumer queues
 Multi-consumer queues (for pub/sub)
 Non-persistent messages (now called buffered)
 Message ordering, prioritization, grouping, navigation,
selection, inspection, delay, retention, and expiration
 SQL-based access to queue, message metadata,
message payload
 Various interfaces including PL/SQL, C++ and Java
 Rich payload typing model. Scalar, user-defined and
XML.
 Much, much more

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 AQ already installed and free to use
 As DBA…
 QSCHEMA wants to create a queue

GRANT EXECUTE ON sys.dbms_aqadm TO QSCHEMA;

GRANT EXECUTE ON sys.dbms_aq TO QSCHEMA;

 CUSTSCHEMA wants to enqueue
GRANT EXECUTE ON sys.dbms_aq TO CUSTSCHEMA;

 CLIENTSCHEMA wants to dequeue
GRANT EXECUTE ON sys.dbms_aq TO CLIENTSCHEMA;

 If app/svc connected to CLIENTSCHEMA will use JMS
GRANT EXECUTE ON sys.dbms_aqin TO CLIENTSCHEMA;

GRANT EXECUTE ON sys.dbms_aqjms TO CLIENTSCHEMA;

 Design message payload
 Identifiers
 Content and format

 Design queue
 Payload type?
 How many messages per minute/hour/day? Spikes?
 Multiple clients allowed to pull the message?
 How to handle errors? Notify anyone?
 Retries allowed? How many?
 Delay needed to fix problems?
 Is Oracle RAC involved?
 Need to browse or inspect messages?
 Grouping, sorting, tagging, priority needed?

(as QSCHEMA)
1. Create queue table
2. Create queue
3. Start queue
4. Grant enqueue/dequeue permissions

 Cleanup Script
SET SERVEROUTPUT ON

DECLARE

 l_queue_name VARCHAR2(30) := 'MY_Q';

 l_queue_table_name VARCHAR2(30) := 'MY_SQT';

 lx_queue_is_not EXCEPTION;

 lx_queue_running EXCEPTION;

 lx_queue_tab_is_not EXCEPTION;

 PRAGMA EXCEPTION_INIT(lx_queue_is_not,-24010);

 PRAGMA EXCEPTION_INIT(lx_queue_running,-24011);

 PRAGMA EXCEPTION_INIT(lx_queue_tab_is_not,-24002);

BEGIN

 BEGIN

 dbms_aqadm.drop_queue(queue_name => l_queue_name);

 EXCEPTION

 WHEN lx_queue_is_not THEN

 dbms_output.put_line(l_queue_name||' does not exist. Check spelling.');

 WHEN lx_queue_running THEN

 dbms_output.put_line('Stopping '||l_queue_name);

 dbms_aqadm.stop_queue(queue_name => l_queue_name);

 dbms_output.put_line('Dropping '||l_queue_name);

 dbms_aqadm.drop_queue(queue_name => l_queue_name);

 END;

 BEGIN

 dbms_aqadm.drop_queue_table(queue_table => l_queue_table_name, force=>TRUE);

 EXCEPTION

 WHEN lx_queue_tab_is_not THEN

 dbms_output.put_line(l_queue_table_name||' does not exist. Check spelling.');

 END;

END;

 Create queue table

BEGIN

 dbms_output.put_line('Creating MY_SQT');

 dbms_aqadm.create_queue_table(

 queue_table => 'MY_SQT'

 ,queue_payload_type => 'SYS.AQ$_JMS_MESSAGE'

 ,storage_clause => 'PCTFREE 0 PCTUSED 99'

 ,multiple_consumers => FALSE

 ,comment => 'My Queue Table: Supports the blah,

blah...');

END;

 Create queue and start it
 Name limited to 24 characters

BEGIN

 dbms_output.put_line('Creating MY_Q');

 dbms_aqadm.create_queue(

 queue_name => 'MY_Q'

 ,queue_table => 'MY_SQT'

 ,comment => 'My Queue: Routes the messages

from...');

 dbms_aqadm.start_queue(queue_name=>'MY_Q');

END;

 That’s it! You now have a running queue, waiting for
messages.
 In addition, Oracle created two “hidden” views on
top of your queue table:
 AQ$queue_table
 Very useful for monitoring and maintenance
 Nice to grant to schemas and roles that need to peer into queue

 AQ$queue_table_F
 Not sure why it exists…yet. No documentation.

 In order for anyone else to use the queue,
permissions must be granted.

BEGIN

 dbms_output.put_line('Granting enqueue privs');

 dbms_aqadm.grant_queue_privilege(

 privilege => 'ENQUEUE' -- also DEQUEUE or ALL

 ,queue_name => 'MY_Q'

 ,grantee => 'CUSTSCHEMA'

 ,grant_option => FALSE);

END;

BEGIN

 dbms_output.put_line('Granting dequeue privs');

 dbms_aqadm.grant_queue_privilege(

 privilege => 'DEQUEUE'

 ,queue_name => 'MY_Q'

 ,grantee => 'CLIENTSCHEMA'

 ,grant_option => FALSE);

END;

 Now use the appropriate programmatic interface to
enqueue or dequeue
 PL/SQL example (as CUSTSCHEMA):

DECLARE

 l_msg sys.aq$_jms_message;

 l_queue_options dbms_aq.enqueue_options_t;

 l_msg_props dbms_aq.message_properties_t;

 l_msg_id RAW(16);

BEGIN

 l_msg :=

sys.aq$_jms_message.construct(dbms_aqjms.jms_text_message);

 l_msg.set_text('<useful message here>');

 dbms_aq.enqueue(

 queue_name => 'QSCHEMA.MY_Q'

 ,enqueue_options => l_queue_options

 ,message_properties => l_msg_props

 ,payload => l_msg

 ,msgid => l_msg_id);

 COMMIT; -- very important; won't enqueue without commit

END;

 Pulls the first message off the queue by default
 Many modes and options and design decisions here
 By query, by identifiers, by grouping, browse mode, etc.

 Will rarely see messages in the queue table
 Unless dequeue transaction is failing
 Or sender requested a dequeue delay
 Or table created with retry_delay value

 Messages will be READY, PROCESSED or EXPIRED
 Dequeue request is a blocking operation

 Using the PL/SQL API:

DECLARE

 l_msg sys.aq$_jms_message;

 l_msg_text VARCHAR2(100);

 l_queue_options dbms_aq.dequeue_options_t;

 l_msg_props dbms_aq.message_properties_t;

 l_msg_id RAW(16);

BEGIN

 dbms_aq.dequeue(

 queue_name => 'QSCHEMA.MY_Q'

 ,dequeue_options => l_queue_options

 ,message_properties => l_msg_props

 ,payload => l_msg

 ,msgid => l_msg_id);

 l_msg.get_text(l_msg_text);

 dbms_output.put_line('Dequeued message text: ' ||

 CHR(10) || l_msg_text);

 COMMIT;

END;

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Queues and queue tables are self-maintaining
 You can stop a queue and alter it
 Administer through OEM and DBMS_AQADM

 Will generally be empty, unless nothing is
dequeuing, or dequeue transactions are failing
 If not empty, the system doing the dequeue must
be investigated, not the queue

 Useful message metadata in AQ$queue_table view
 Can query, but cannot perform DML on the queue table

 Oracle data dictionary queue views, like [G]V$AQ,
user/all/dba_queues and user/all/dba_queue_tables

SELECT queue

 ,enq_timestamp

 ,enq_user_id

 ,msg_state

 ,retry_count

 ,original_queue_name

 ,expiration_reason

 ,user_data

 FROM aq$my_sqt t

 ORDER BY 2 DESC;

SELECT t.queue

 ,t.enq_timestamp

 ,t.enq_user_id

 ,t.msg_state

 ,t.retry_count

 ,t.original_queue_name

 ,t.expiration_reason

 -- good to convert if message is numeric

 ,TO_NUMBER(t.user_data.text_vc) customer_id

 FROM aq$my_sqt t

 ORDER BY 2 DESC;

SELECT dq.owner

 ,dq.name

 ,dq.queue_type

 ,g.*

 FROM gv$aq g

 JOIN dba_queues dq

 ON dq.qid = g.qid;

 Expired or failed messages moved to the exception
queue, a queue table created by Oracle and named
AQ$queue_table_E
 Cannot enqueue directly to exception queue
 But can dequeue from it, allowing one to re-process
or re-enqueue failed messages
 Must formally “start” it and enable dequeuing

BEGIN

 -- Start the default exception queue as well so we can dequeue from it.

 dbms_output.put_line('Starting AQ$_MY_SQT_E exception Q');

 dbms_aqadm.start_queue(queue_name => 'AQ$_MY_SQT_E', enqueue => FALSE, dequeue => TRUE);

END;

 After that, the queue table view can tell us about
messages that are now in exception
 Using the query seen 2 slides ago:

 Tried notify/fix on entry into exception queue. Fail.
 Prefer to trap, notify and fix problem messages during
the retry_delay * max retries window

 We had the need to know about errors the second they happened.
 We attached an after update trigger to the queue table that looks for

any change in retry_count, and sends an email with message context.

 Created a package for this notification routine, and other common
queue-related operations.

<switch to PL/SQL Developer to show package>

CREATE OR REPLACE TRIGGER my_sqt_au_trg

 AFTER UPDATE ON my_sqt

 FOR EACH ROW

DECLARE

BEGIN

 IF (:old.retry_count <> :new.retry_count) THEN

 my_q_mgr.handle_retry(:old.user_data.text_vc);

 END IF;

END my_sqt_au_trg;

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Lots of developers running local Tomcat with copy
of the app, each with their own listener dequeuing
from the same queue on the shared Dev database.
 Random who ended up with the message
 Failures would retry the default 5 times < 1 second
and immediately go to exception. Default delay is 0
seconds. No time to diagnose. Frustrating.
 We bumped delay to 3600 seconds, and limited to 4
attempts: BEGIN

 dbms_aqadm.alter_queue(

 queue_name => 'MY_Q'

 ,max_retries => 4

 ,retry_delay => 3600);

END;

 Basic tenet of queuing is that each message will be
processed once and only once. In 10.2.0.4, try twice and
often twice!
 Bug (5590163) in Oracle allows messages in our single-
consumer queue to be dequeued twice.
 Logs showed the two nodes of the app server each
dequeuing same message in same second.
 Processing didn’t see the other transaction, and tried to
create duplicate records in downstream system.
 AQ was acting like it had never heard of ACID
transactions.
 Oracle’s “fix” created bug 7393292. Truly fixed in
10.2.0.5?

 Our system dequeuing did too much: too many
queries and DML statements before deciding to finish
the transaction. Too much stuff to go wrong.
 Lots of errors during initial months of dev and
testing. Queue table became encrusted with old,
failed messages. Needed to clean it out.
 Purge with DBMS_AQADM interface:
DECLARE

 l_purge_opt dbms_aqadm.aq$_purge_options_t;

BEGIN

 l_purge_opt.block := TRUE;

 dbms_aqadm.purge_queue_table(

 queue_table => 'MY_SQT'

 ,purge_condition => 'queue IN (''AQ$_MY_SQT_E'',''MY_Q'')'

 ,purge_options => l_purge_opt);

END;

 Also possible to pinpoint the messages to remove
using the purge_condition parameter, which operates
on the columns found in the queue table.
 Alias “qtview.” required for access to attributes of
the user_data column.

DECLARE

 l_purge_opt dbms_aqadm.aq$_purge_options_t;

BEGIN

 l_purge_opt.block := FALSE; -- don't block enqueue or dequeue attempts (this is the default)

 dbms_aqadm.purge_queue_table(

 queue_table => 'MY_SQT'

 ,purge_condition => 'queue = ''MY_Q'' AND qtview.user_data.text_vc = ''hello world'''

 ,purge_options => l_purge_opt

);

END;

 Different project got error on dequeue:
ORA-00942 table or view does not exist at this DBMS: sys.DBMS_AQIN line 651

 Run as queue owner: Good
 Run as other schema accessing the queue: Error
 Had to run trace to find missing priv
 Found that if the system dequeues in BROWSE
mode, the queue owner must grant SELECT access on
the AQ$queue_table_F view to dequeuing schema.

 During upgrade project, half DBs 10g, other half 9i.
 Found that enqueue script written for 10g didn’t
work on 9i.
 Turns out AQ$_JMS_MESSAGE has multiple
constructors in 10g, and only one in 9i.
 9i version that takes an integer (message type
constants defined in DBMS_AQ package spec) worked
great on both versions.
 10g constructors can accept a variable of the
message type, like SYS.AQ$_JMS_TEXT_MESSAGE,
but is more complex to use (3 more lines of code)

 Bill Coulam
 bcoulam@yahoo.com
 http://www.dbartisans.com

 Open Source PL/SQL “Starter” Application Framework
 http://plsqlframestart.sourceforge.net

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://plsqlframestart.sourceforge.net/

