PL/SQL Application Frameworks…
Coulam

PL/SQL Application Frameworks for Custom Systems
Bill Coulam, Church of Jesus Christ of Latter-Day Saints
If the lessons of history teach us anything it is that nobody learns the lessons that history teaches us. - Unknown
Attention to application architecture is crucial to the aspects of deliverables that users, managers and developers care about: speed of delivery, cost, quality, flexibility, robustness, scalability, performance, and so on.

Unfortunately, eager management and markets usually shout louder than the wisdom of generations who already learned their lessons the hard way. Application architecture (including the application framework), testing, data modeling and documentation are usually the first to be sacrificed on the altar of time and cost savings. This should not happen. Software architecture and the data model are the two biggest slabs of any system's foundation. They cannot be ignored or handled poorly. It's like building a beach house on two stilts propped in a pile of rubble, expecting it to weather the next hurricane.
This myopic approach to software construction seems to be the sad default in too many shops that utilize PL/SQL as well. Many perceive PL/SQL as a "toy" language, a necessary evil in the need to persist objects and data, or a language not worthy of full attention like Java and C++/C#. Best practices like design by contract, test-first, independence, keep it simple (KISS) and don’t repeat yourself (DRY) are given the cold shoulder as if they didn't apply. Something "exotic" like a PL/SQL framework is not even considered, let alone removed from development planning.
In harmony with Feuerstein and other PL/SQL evangelists, this paper is an attempt to encourage the Oracle community to care enough about our craft to design and produce top-notch work products, quickly and reliably, using frameworks.
If the reader is unfamiliar with application frameworks and libraries in general, or how they fit into software construction best practices, I will provide a brief overview. Further learning can be had from the programming gurus (Knuth, McConnell, Hunt and Thomas, Fowler, Meyer, Beck and others
), mentors and coaches, and hard-won experience.

If I am preaching to the converted, then this paper will also provide pointers on how to build, improve and introduce a PL/SQL framework.

Finally, a list of known PL/SQL frameworks and libraries is presented for veterans looking for new tools, or the lucky few currently in the build vs. buy stage.

What is an application framework?

An application framework is a collection of software modules or components that implement common functionality used by developers to write software in a rapid, consistent manner.
Examples of commercial and public frameworks are J2EE, .NET, JFC, Struts, Spring, Spry, Flex, Silverlight, Ruby on Rails, and Fusebox. There have been many others in the past, and there will be many more. These frameworks were all born of a need to make development of desktop and web applications easier, quicker and more reliable.
In-house frameworks for a company's custom-built applications are no different. Although portions might have been anticipated and designed up front, the majority of a custom framework is usually created after the problem domain is fully understood, born of a need to simplify existing code, handle emerging commonalities, centralize algorithms, refactor, optimize, smooth development of database access code, etc. Sometimes in-house frameworks integrate 3rd party libraries and provide a unifying face to an otherwise disparate collection of specialized utilities.

A framework must be well-built, tested and documented to be useful to its intended audience, ideally bundled with training media or a sample application to demonstrate its use. Good documentation, training and enforcement are essential to beat the learning curve and start realizing the efficiencies and boosts to quality that attend building with frameworks.

Related to frameworks are libraries and components. Frameworks are organized collections of related libraries, and libraries are organized collections of related components. A component (implemented as a function or procedure in PL/SQL) is the finest-grain building block upon which a framework-based application is built. I use the generic term routine when referring to a function or procedure.
Note: What I'm covering here might not be considered a proper framework by object-oriented purists
. The Sofware Engineering Body of Knowledge defines a framework as an OO-related artifact that is "a partially complete software subsystem that can be extended by appropriately instantiating specific plug-ins (also known as hot spots)
." However, I've composed several full PL/SQL applications using little more than three libraries (all part of the same custom framework) that handled the user interface, data and lower-level layers
. These PL/SQL frameworks are even extensible by wrapping them with higher-order packages. They are full fledged frameworks, in my humble opinion.

Oracle-specific nuances
In this paper, I use the terms module, library and package interchangeably. However, in the object-oriented world, application frameworks are usually built as class libraries, so they often use the two terms as if they were the same thing, rather than distinguishing frameworks as containers for libraries, as I've done here.

In addition, there is an Oracle-specific thing, called a library, that we should clarify before proceeding. Oracle provides the ability to make calls to external C or Java code. When writing PL/SQL that needs to dip into this external code, one needs to write a little interface that tells the PL/SQL engine a little about the external call. This interface is called a library. This kind of library is unrelated to the libraries we are speaking of in relation to application frameworks.

Although Oracle does provide the ability to build with objects and inheritance, the frameworks introduced in this paper are straightforward PL/SQL packages and routines that are designed with structured coding principles. So we won't be talking about subclassing, inversion of control, the Hollywood Principle, or other aspects of object-oriented framework construction…thank goodness.

Is a PL/SQL application framework needed?

Why do we never have time to do it right, but always have time to do it over? - Unknown
The short answer to do you need a framework, is "Yes." A better answer is "It depends."

In an ideal world, you will have the luxury of setting standards, creating templates, tailoring a development methodology, and setting up all the tools and infrastructure (including the application framework) well before developers begin writing code. It can happen. I had just such an opportunity at a startup in Colorado. But for the majority of us, things are not that simple.

For most, lots of legacy code has already been written; things are difficult to maintain, let alone enhance; and something has to be done soon before things implode. It is time to survey the current state of affairs at the company, acknowledging future direction, and then make a plan. Your need for a PL/SQL application framework depends on a number of factors, only a few of which we'll have the space to cover here.

Assessing current and future needs

First, you might start with timing. Are you at the start of a project's or company's lifecycle? Or are you in the middle? Perhaps it is long after most in-house systems are already built?
The best time to put a framework in place is before any code is built, of course. But except for low-level, essential stuff like exception handling, logging, configuration, code lookup, etc., the majority of an enterprise's framework is built after the problem domain is fully explored, frequently well after a few applications have already been built, and candidates for simplification and refactoring are beginning to emerge. So if you are at the beginning of a project or company history, you might put a few basics in place, and then hold off for a while as the project/business develops and the fog clears.

If you are in the middle, it depends on the pain being experienced (mentioned further below). If it is too great, you should begin refactoring efforts soon, materializing a few more components of your in-house framework. If not, you might wait a little longer as things unfold.

If you are nearing or past the completion of a number of systems, hopefully you have been keeping track of the multiplying commonalities, holes and pain points. Now that most of the details are understood, it is time to expand the framework, working the changes into existing code using best coding and testing practices. The further a developer or team digs to follow best practices, reusable application frameworks materialize out of their work products, thereby benefiting themselves and all future applications produced by that shop.
Second, examine your existing code base. This could take a long time if you are inheriting legacy systems. You need to have a sense for the structure, relationships and robustness of your systems. One should not be afraid or ignorant of the systems one manages. You might start by making a catalog of triggers, types, packages and standalone routines. Note any naming schemes and common conventions used. Solving a few production problems is often a good way to gain needed insight. You might attempt an application topology map using a tool like TOAD, ClearSQL, or simply Visio. Determine application structure, flow and dependencies in this manner, or use the data dictionary to map it for you. See if you can discern the layers, either intentional or accidental. Be sure to examine how low-level functionality is handled, especially exception handling, debugging, logging, auditing, locking and messaging. Is there any other functionality implemented redundantly or in a central location? Note them. All of these activities will foster familiarity with your systems. You should now have a better sense of what you have, what you need, and the time and risk involved to refactor anything.
Another reason to examine the code base early on is to determine the quantity of PL/SQL used. If all you've got is a few standalone procedures here and there, or a handful of packages, then it would be hard to justify a framework. In this case, just pay attention to best practices with the little you do write and manage, and refactor any redundant code into a package of common functions. But if your shop has, or will have, a significant investment in PL/SQL, it should be built upon a solid foundation, and hung upon a rich, robust framework, period. No arguments that "there's no time" are acceptable. You can't afford not to build upon, or refactor upon, a common framework.
Third, is there an existing framework in place? Is it used? Is it used consistently? Is it designed and documented well? Does it meet your needs? If you answered Yes to all of the above, lucky you! You can stop right now and enjoy the fruits of wise architecture. Your systems are probably fairly stable and maintenance is a breeze. If you answered No, it is time to build a good framework or improve the one you have and start using it.

Architectural direction also plays a significant role. If your technical leadership avoid PL/SQL like the plague, and try to treat Oracle as an interchangeable piece of the application stack, then you probably do not need a framework. Some shops dictate all business logic and DML be written in the middle tier language, obviating the need for PL/SQL entirely, let alone a framework that would be bypassed. Some dictate that PL/SQL be used for all DML access, passing in parameters and returning a ref cursor to the result set. In shops such as these, only a partial framework would be necessary. Then there are companies that take full advantage of Oracle and PL/SQL. Complete frameworks would be required there.
Finally, how are things going with maintenance, enhancements and DB upgrades? What if there was a bug in production; can you turn on debugging for a package, session or user and find the answer in 10 minutes without recompiling anything? Let's say you wanted to take advantage of 10g or 11g PL/SQL enhancements, like removing the use of substr() to chop all your strings down to 255 characters
. Would you need to change one routine, or 300? Can you build a huge PL/SQL package in an hour based on generated code and framework calls, or does it take your developers a few painstaking days to complete? Is the sensitive algorithm that implements a given security policy found in one place, or replicated in a dozen hard-to-protect locations? How many times have your developers written their own version of is_a_number()
? Tired of designing the same user-role-authorization tables and code for each new application at your company? What if you go global; can you accommodate the requirement of a dynamic date format with a one-line change, or will it take you weeks to revisit all the code? Wouldn't it be nice to provide estimates, especially short-window estimates, based on empirical evidence instead of SWAGs? These are all points of pain solved by robust frameworks. If your PL/SQL systems are causing you pain, you need a framework. You probably need other things fixed as well, but a good framework will really help.
The sooner you get over the learning curve and start using a good framework, the faster you will blow the old "Fast. Flexible. Cheap. Pick two." maxim out of the water and reach the holy grail of all three.
What should a PL/SQL framework contain?

You know you've achieved perfection in design, not when you have nothing more to add, but when you have nothing more to take away. - Antoine de Saint-Exupery

Once you embark on designing or finding a suitable framework, it helps to know what it ought to contain. Start with the low-level features that every system needs, no matter what type of application you are building. Then proceed to functionality specific to your application or industry.
Common libraries
Most database-driven systems need certain services before development begins:

· IO - DB interaction with the OS and file system to read and write files, and write output to the screen on demand.
· Codes - table(s) and API for getting and setting the types, categories, codes and literals used in most data models.
· Parameters/Configuration - table(s) and API for maintaining and querying configurable parameters for the development, testing and production environments; parameters like timeouts, defaults, URIs, debugging toggles, etc.
· Literals, types and standard cursors - package based static/standard elements, including pre-loaded, in-memory collections of "busy" reference tables; used by both front and back-end code.
· Assertions - simple method of verifying assumptions and complying with design-by-contract tenets.
· Messages and Email - table(s) and API to handle text messages sent to various targets (table logs, emails, SMS, files). Standardizes, sanitizes and can internationalize the informational, warning and error text fed to end users.
· Logging - table(s) and API to log messages of varying severity, with or without context, error stacks, etc. Sometimes combined with the messaging/email library, sometimes kept separate.
· Locking - table(s) and API to provide optimistic, pessimistic, logical and/or finer-grained locks than those provided by Oracle for those areas that must be serialized or protected from concurrent modifications.
· Auditing - table(s) and API to answer when the business asks "Who did what, and when?" Could wrap Oracle's built-in auditing capabilities, or your own custom solution.
· Debugging, Timing and other Instrumentation - table(s) and API to dynamically turn on debugging and timing. The tables and API used are often combined with the messaging/logging library. Nevertheless, this is so crucial to your business' long term viability, and the ability to placate customers quickly when the inevitable bug or performance glitch appears, that it needs to be treated as a separate feature group of the framework.
· Error Handling - constants and API to standardize how exceptions are handled.
· Unit Testing - tables and API (really a full library or subframework) dedicated to storing, measuring and reporting tests and test suites.
· String manipulation - API for wrapping common string operations, like delimited text to collection and vice versa, string cleansing, format validation, encoding, and so on.
· Number manipulation - API for wrapping common numeric operations, like number validation, numeric collection comparison, subtypes for anchoring and so on. If your systems are algorithm and math-centric, a math or formula library could spawn from this initial effort.
· Date handling - constants and API for formatting, validating and displaying dates.

· Directory Integration - API for interacting with LDAP directory servers, particularly for confirming authentication. In more advanced enterprises, application authorization and role-based security is also stored in the central directory.
· Data layer code generation - API for removing the tedium of coding redundant blocks of code, in particular table API code to protect and standardize all DML access, and trigger API code that does comparisons of old and new values for selective auditing and audit-based notifications.
· ETL-related modules - API to wrap use of certain Oracle features and built-ins, like directory creation and management, external tables, pipelining, partitioning, parallel DML and DDL, creation and management of transportable tablespaces.
· Code Templates - table(s)/files and API to access common PL/SQL code structures, as well as a common SQL and PL/SQL code repository. Could wrap with a tool plugin or web-interface to allow team-based administration and population.
· DBA-centric tasks - API to provide version-agnostic, and error-trapping DDL operations for shops using automated builds of database-specific scripts and code.
These are features most every application requires. Beyond this, you'll need to examine other common Oracle built-ins you will be using (or are already using) to determine if your framework is still lacking. Do you use Oracle AQ, Pipes, Alerts, VPD, Flashback, Materialized Views, etc? Standardize their use into a packaged API. Then enforce and monitor their adoption. Your custom framework is nearing completion now. Keep digging, looking for things to simplify.
Industry-specific libraries
Make it work. Make it right. Make it fast. -Kent Beck
After finalizing your initial framework of low-level components, dive into getting working code for your customer as soon as possible. Further modules for the framework should be added later as the problems and details of the business come to light, and opportunities for re-factoring become apparent.

Domain experience is an essential ingredient in any framework design effort. It is hard to try to follow a front-loaded, top-down design process under the best of circumstances. Without knowing the architectural demands of the domain, such an attempt is premature, if not foolhardy.

The identification of more narrowly-focused additions really depends on your powers of observation, and passion for elegant, simple, rock-solid code. Perhaps your application has special needs surrounding image-handling, web pagination, reporting, SOA-fluency, geospatial mapping, inventory tracking, financial modeling, zip code distance calculation, ad-infinitum. Whatever your system does, you just need to find the hotspots, the things done more than once and/or inconsistently. Factor them out into a standardized, packaged API, and then introduce them into the code, testing vigorously as you go.
Best practices and tips for framework construction
Simplicity carried to the extreme becomes elegance. - Jon Franklin

Industry-accepted best practices in software design and construction produce robust, secure, elegant software that will pay back huge rewards in time, but won't be immediately apparent or appreciated. Sadly, that kind of recognition is reserved for the salespeople. However, there are a few practices which had immediate and significant benefit to the quality of my own work products which I'd like to share with you: commenting, assertions, formatting, test planning and simplifying.

Believe it or not, adding high quality comments for my interfaces and implementations led to much better code. As I was forcing myself to think of my audience and how the interface would be interpreted and used, it exposed weaknesses in my assumptions, errors in logic, and holes in the defensive portions of my code. One great piece of advice from the gurus was to write comments that give a little history and explain your intentions, as this is the first and most vital information lost to the mists of time and attrition. "What" and "how" we can usually figure out when reading legacy code; the "who", "when" and "why" are quickly forgotten, or disappear when the author moves on.

The same happened as I started adding assertions, checking all assumptions about the parameters fed to my routines. It helped me find numerous vulnerabilities. This made the code so much more reliable, I can't recommend it highly enough.
With customizable templates and formatting tools built into many PL/SQL IDEs today, it is a marvel so much sloppy PL/SQL can still be found. It takes no more than a second or two to format a huge package using these automated tools; so they should be exercised every time you check tested code in. Using templates and beautifiers produces consistent, easily read code that is much less daunting to grasp and maintain than a tangled, undisciplined, carefree jungle. When everyone's code looks the same, one of the agile programming principles of shared ownership can be applied. This reduces fear, expands the spheres in which the developers are cross-trained, and increases shared knowledge and camaraderie in the team, on top of producing better work.
Martin Fowler, at the Software Development conference in 2000, started his session out with the plea to implement test-first development. He basically said that if we fell asleep and didn't get a thing out of the lecture, he wanted us to understand that test-first development would cut our development time in half, not double it as many dev managers fear. I have found this to be true. Much like the exercise with commenting, the most valuable part of testing, for me, has been thinking about the tests that should be written. The majority of bugs I find in my programs become apparent while I'm designing the tests. The few remaining bugs are exposed by the tests themselves. Even if you don't adopt test-first practices, or invest in a testing framework, you should still construct unit test conditions and cases that exercise all the logic paths in your libraries. If you don't have time to automate this, then you can at least use the interactive debuggers that come with most PL/SQL IDEs today, and the test suite tools in PL/SQL Developer and TOAD.

Programs must be written for people to read, and only incidentally for machines to execute. - Donald Knuth

Knuth's famous quote is very true. The human brain can synthesize just so much complexity before the eyes glaze over and the synapses start misfiring. If the code is difficult to read, maintain and follow, mistakes will be made, lots of them. The best advice I have for you when designing a custom framework can be found in the best programming books. My favorites are those by Steve McConnell, David Thomas, Alistair Cockburn, Steven Feuerstein and Thomas Kyte. The reader is encouraged to become familiar with their works and others, as there is no possibility of covering their collected wisdom here. There is one common thread they all share though: simplicity.

Simplicity is the ultimate sophistication. - Leonardo da Vinci

Simplicity is prerequisite for reliability. - Edsger W. Dijkstra

There is a reason this paper is peppered with quotes about simplification. Rabid dedication to simple, elegant code has been the biggest factor in improving the quality and health of the systems I've designed and built. McConnell gives 16 tangible benefits of simple routines in chapter 5 of Code Complete. Furthermore, McConnell spends two of the first chapters of Code Complete on producing small, well-named, cohesive (single purpose), loosely coupled (independent) routines that use assertions and handle exceptions well, with debugging aids built in. Of the 70 best practices encouraged by Hunt and Thomas
, about one quarter of them are dedicated to producing clean, simple, orthogonal (independent), resilient routines, which use assertions, check contracts, and handle exceptions well.
At times, when attempting to simplify and clean up my code, simply by force of habit, I shake my head wondering what I'm doing spending so much time on seemingly unimportant minutiae. But inevitably, after shaking out a few of the redundant bits, and blocks that really belonged in their own functions or procedures, everything in the module starts falling into place, the design and flow of the program becomes so much easier to follow, the lines of code decrease dramatically, the amount of testing and setup decrease, enhancement become easy, and quality shoots up. Every time that happens, I see why the gurus dedicate so much space to the subject. The same principle applies to all aspects of creative work.
This is even more important when designing frameworks due to the amount of code that will eventually depend on its components. Changing the interface to a component after it has been in use for a few years can be rather expensive, so framework components need to be as well-designed, simple and reliable as possible from day one.
Tips for building a framework

The framework's components will be called upon many, many times. If your code needs debugging capability, which would you rather type as you are instrumenting your code: fmwk_debugging_api.debug_message(), or dbg.p()? Long names may be better at self-documentation, but they are really tedious to type hundreds of times. So use an abbreviation dictionary, and create framework packages and routines with short, but intuitive names. Ensure that whatever naming scheme you pick is consistently applied throughout the framework so users can find their way around your libraries with little effort, and enjoy using them (because they aren't painful to call upon or hard to remember). If you don't have them already, you should have PL/SQL programming standards and database design guidelines that would contain the naming scheme just mentioned. The framework should be the poster child for the proper application of the standards. Developers will look to the framework code as a reference, and as they are doing so, they will become more familiar and comfortable with it as well.
As mentioned earlier, ensure that your framework components check their assumptions and protect their inner workings by using assertions. If you are unfamiliar, they are covered nicely by Steven Feuerstein in his books and several online articles.
Only catch expected exceptions. Let the inherent exception-handling mechanism in PL/SQL handle the rest. Ban the use of WHEN OTHERS except when ignoring an error is required.

Standardize and secure access to framework data structures with generated APIs (packaged PL/SQL). Use your framework's code generation ability to write most of this for you.
Document your API well. Provide usage notes and example code, caveats, design notes, alternatives rejected and why, parameter valid values, Oracle versions supported, etc. Consider writing a high level document that introduces the framework and how to use it appropriately. Even better would be sample code from a working application, and perhaps some in-house training for new hires and contractors.

Use overloading judiciously to provide alternatives when you anticipate differently typed parameters, or callers with more or less context. Also use overloading or parameter defaults to give your libraries backwards compatibility when you can't avoid modifying a framework API.
Decentralize system-wide constants into the libraries to which they relate; do not keep them all in one place. Such tight coupling violates best practices. Prior to 11g, such centralization would cause mass invalidation when you added a constant.
Make use of autonomous transactions for your logging, messaging and debugging libraries. This enables you to capture session/user/parameter metadata surrounding captured exceptions, even when the transaction rollback would have ordinarily eliminated the new rows in your logging table.
Examine the libraries in your framework carefully. Ensure that the lowest-level modules, like IO and Exception Handling are independent of other libraries, especially higher-level libraries (resulting in circular dependencies, a migrator's nightmare). Design your framework in layers, and then write your custom applications on top of the framework. If you will have several applications running on the same database that make use of the framework, keep the framework and its structures in one schema (I like to name mine COMMON or CORE), and grant appropriately to the application schemas that will use it. See a model of this simple design in Figure 1 at the end of this paper.
Make sure the framework code is versioned in a good source code control system. And provide a visual diagram or model that guides your developers and helps them assimilate and understand the layers and dependencies quickly.

How is a framework adopted?

There are only two industries that refer to their customers as "users". - Edward Tufte

Once you have an initial framework built, tested, documented and ready to go, it is time to set it free and observe its adoption by the frameworks' users: your developers. This will not be possible unless you have prepared the way. Management, development and QA should be anxiously awaiting its debut by now.
Examine your unique IT environment. Look at the development methodology, management style and temperament, stomach for risk and refactoring, testing and regression testing capability, headcount and abilities, queued projects, and extent of 3rd party integration and dependencies. The state of your environment will determine how easy it will be to rope in a sponsor for introducing a framework, and how quickly one will be allowed to begin its design and integration with existing projects and legacy code. Based on all these factors, map out a plan for getting it accepted and incorporated into development. There's really no way I could anticipate or address every possibility here, so this exercise is left up to the reader. However, there are a few subjects in this area which deserve some attention.

Sponsors and Champions
There is nothing more difficult to carry out, nor more doubtful of success, nor more dangerous to handle, than to initiate a new order of things. For the reformer has enemies in all those who profit by the old order, and only lukewarm defenders in all those who would profit by the new... - Niccolo Macchiavelli

Introduction of a framework into the inner workings of existing systems will take some time. Time is money. Most companies want to save as much of that as possible. They will consider your rocking the boat risky (even though the framework stabilizes the boat). You will need a sponsor so that your project is approved and not axed in backroom planning meetings. You will also need a champion to lay all the necessary groundwork and to see that the ball isn't dropped.
Ensuring the framework isn't stillborn depends on who sponsors it to the people that approve and fund projects, the technical leads and architects, and the development team. This is so much easier if you are the technical lead, IT director or CIO, but tough if you are the only sane developer in your shop committed to your craft. If you aren't the right person to champion this framework, find someone who is and make fast friends with them.
The champion's job will be to sell the sponsor or management team that investment in further software infrastructure will benefit the bottom line. The champion must work with the technical leadership to get it added to the architectural map, standards, and development process. They also need to convince developers that its use is worth the time they invest to overcome the learning curve, and change crusty, old habits they've grown fond of.
If you have no champion and your role doesn't have the power to enforce the introduction of a framework, you may have to start small. You can gradually build the framework within the context of existing legacy and new software projects. Write packages that come with their own internal framework components. After they have been in use for a while and proven their utility, you can refactor them out into their own packages. As time progresses, you can suggest that the framework be adopted and used on a wider basis, pointing to the lack of bugs from your work products, your productivity and development speed, etc. You'll have the empirical evidence to prove it, developed right there in-house, running harmlessly with the legacy apps for months. Of course this approach is probably tenable only in smaller, flatter organizations. Larger ones tend to have just enough level-headed leadership, that such tactics will not be necessary.
Enterprise architecture and standards

Programming is a combination of art, science and engineering -- and for those inheriting legacy systems, archaeology, psychopathology, waste management and forensics. - Bill Coulam

If you are in the appropriate role to do so, include mention of the framework in your firm's enterprise architecture map/model/statement, there within the section on Oracle and PL/SQL. Ensure your developers and contractors receive training on how to use it right, and provide them with sample code so they can see it in use. Include examples of its use in your PL/SQL programming standards document, again reinforcing it strategic role. Once that foundation is in place, ensure that your development methodology is modified to include it in your day-to-day activities.
Development methodology

Communication with an engineer is only slightly more difficult than communication with the dead. - Rus Stiles, Sr.
Whether you subscribe to BDUF and Waterfall, RUP, Scrum, Crystal, XP, TDD, FDD or simple cowboy coding, adopting a good framework into your PL/SQL assembly line is a good thing. Of course, the agile methods, with their dedication to continuous builds and testing, are much more adept at accepting changes, even big ones like adding infrastructure software.
Once introduction and training are completed, incorporation into the development cycle is as simple as altering the methodology to include "adheres to and uses the database framework appropriately" in the design and code review checklists. If you are an Agile programming acolyte, you can also include a less formal check for the framework in the peer review and pair programming process.
Finally, use your existing feedback mechanisms to accept suggestions from developers. Use defaulted parameters and overloading to ensure backwards compatibility when introducing framework changes. Roll changes and new features out in a controlled fashion using the usual industry methods for releases and upgrades.
Am I reinventing the wheel?

Those who cannot remember the past are condemned to repeat it. - George Santayana

Before you write your own, it is a good idea to survey the current market, evaluate the offerings, and determine if anything already meets most of your needs. This could save you weeks to months of design and build time. A few years back, there were a handful of commercial PL/SQL libraries. Today, that number has dwindled, but the number of open source libraries has grown. A few of them, particularly from the workshop of Steven Feuerstein and Quest, deserve a few comments. The rest will be presented in an abbreviated form to shorten your research. Surely there are more frameworks and libraries available than those on this list. So don't give up if you don't see it here.
	Collection Name
	License
	Purpose
	Location & Notes

	PLNet.org
	Free
	Repository of PL/SQL libraries and utilities
	plnet.org

	PL/SQL Starter Framework
	Free
	Author's starter framework. No code-gen utilities.
	sourceforge.net/projects/plsqlframestart

	Feuerstein's
Work
	Free
	Repository of new and old code generation utilities by Steven Feuerstein
	stevenfeuerstein.com/gencentral.html

	Quest Pipelines Archive
	Free
	Repository of useful PL/SQL utilities
	quest-pipelines.com/pipelines/plsql/archives.htm#misc04

	QCGU (Quest CodeGen Utility)
	Free
	Framework, Standards, Scripts, Template Factory, Code Generation, + more
	qcgu.net

Latest incarnation of Feuerstein's vast reservoir of experience. Preceded by QXNO, PL/Vision, and PL/Generator.

	PL/Vision
	Free
	Framework, API Generator, + more
	quest-pipelines.com/pipelines/dba/PLVision/plvision.htm
Replaced by QXNO and then QCGU. Not supported.

	PL/Generator
	Free
	Table API Generator
	stevenfeuerstein.com/plgen.zip
Replaced by QCGU. Not supported.

	PL/SQL Interface Generator
	Free
	Table API Generator
	sourceforge.net/projects/plsqlintgen

	PLSQLGenPkg
	Free
	Table API Generator
	sourceforge.net/projects/plsqlgenpkg

	Quest CodeTester
	$$$
	Testing Framework and Software
	quest.com/code-tester-for-oracle

What started as Steven Feuerstein's attempt to bring agile-esque "test-first" mentality to PL/SQL (utPLSQL), has been heavily reworked, solidified, and given a UI.

	utPLSQL
	Free
	Testing framework
	sourceforge.net/projects/utplsql

	utPLSQL_DWH
	Free
	Testing framework for Data Warehousing
	sourceforge.net/projects/utplsqldwh

	PL/SQL Unit Test Framework
	Free
	Testing framework
	sourceforge.net/projects/plsqlunittest

	Quest Error Manager
	Free
	Error Handling
	tinyurl.com/27xkyr
Included in QCGU. But offered separately as well. Not supported.

	Log4PLSQL
	Free
	Logging
	log4plsql.sourceforge.net sourceforge.net/projects/log4plsql

	OraLog
	Free
	Logging
	sourceforge.net/projects/oralog

	Orate
	Free
	Logging
	sourceforge.net/projects/orate

	Hotsos Library
	Free
	Tuning
	sourceforge.net/projects/hotsos-ilo

	PLDoc
	Free
	Documentation
	sourceforge.net/projects/pldoc

	PL/FLOW
	Free
	Workflow
	sourceforge.net/projects/plflow

	FTP Interface
	Free
	FTP from PL/SQL
	myoracleportal.com/Downloads/details/id=23.html

	UTL_FTP
	Free
	FTP from PL/SQL
	sourceforge.net/projects/plsqlftp

	UTL_FTP
	Fair
	FTP from PL/SQL
	sourceforge.net/projects/utl-ftp

	Mail Tools
	Free
	Mail from PL/SQL
	myoracleportal.com/Downloads/details/id=24.html

	PL/PDF
	$$$
	PDF Generation from PL/SQL
	plpdf.com

	PL/Suite
	$$$
	PL/SQL software as job schedulers, file managers and cryptographers
	plsuite.com

PL/Run product is unique.

	Tidycode PL/SQL Formatter
	$$$
	Code Formatter
	equinoxbase.com/tpsf/

	ClearSQL
	$$$
	Code Formatter, Analyzer and Diagrammer
	clearsql.com/

There are, of course, a number of commercial and PL/SQL IDEs as well that include features, templates and interfaces that greatly speed development and testing, like TOAD, PL/SQL Developer, SQL Detective, KeepTool, Rapid SQL, SQL Developer from Oracle, and others. If readers are also interested in a jump-start to evaluating the IDE alternatives, download http://www.dbartisans.com/oracle/docs/PLSQL_IDE_comparison.xls. Email me with any questions or concerns.
This is the schema and layout of packages and data structures within the author's open-source, starter framework, which can be found at http://www.dbartisans.com/code.htm and https://sourceforge.net/projects/plsqlframestart. It currently compiles on 8i and 9i databases, and is being versioned into a 10g incarnation to take advantage of conditional compilation, the improved error stack and other PL/SQL improvements. It can be used as-is, or modified to suit your needs…or examined for merit or amusement. The full documentation on how to assemble applications with the framework is, regrettably, a work in progress hindered by the realities of a full-time job and a half.
The arrows represent dependence on "lower-level" Oracle accounts, where the objects in the lower layers are accessed by public or private synonyms, and public or explicit grants from the lower layers to the higher.
	
	Oracle 8i - 11g Enterprise Database
	

	
	Application Schema #1
	Application Schema #2
	Application Schema #3
	

	
	

(

 (

 (
	

	
	Core Schema (where PL/SQL Framework and shared business entities reside)

Higher-level Packaged Libraries: ENV, MSG, DBG, TIMER, MAIL, CODES, etc.

Lower-level Packaged Libraries: STR, NUM, DT, PARMS, IO, EXCP, constants and subtypes and UDTs.

Generated or Customized Table API Packages: API_LOG, API_CHG_LOG, API_EMAIL, etc.

[image: image1.png]

	

	
	(
	

	
	SYS Schema: STANDARD, DBMS*, UTL*, and other built-ins
	

	
	
	

Figure 1: Account Layering within an Oracle Database
� � HYPERLINK "http://devlicio.us/blogs/billy_mccafferty/archive/2007/11/12/standing-on-the-shoulders-of-giants.aspx" ��http://devlicio.us/blogs/billy_mccafferty/archive/2007/11/12/standing-on-the-shoulders-of-giants.aspx� and � HYPERLINK "http://www.larkfarm.com/software_engineering.htm" ��http://www.larkfarm.com/software_engineering.htm� are good starting guides to the programming gurus.

� � HYPERLINK "http://www.ddj.com/blog/architectblog/archives/2006/07/frameworks_vs_l.html" ��http://www.ddj.com/blog/architectblog/archives/2006/07/frameworks_vs_l.html�

� SWEBOK, sec 3.3 (http://www.swebok.org/ch3.html#Ref24)

� You can inherit a similar collection of PL/SQL frameworks by using APEX to build web applications.

� A severe limitation of dbms_output.put_line until 10g.

� With one past employer, I found 20+ separate implementations of a function that determined if a string is a number, some of them buggy. Only a few of them were actually consistent in their implementation.

� Big Ball of Mud (� HYPERLINK "http://www.laputan.org/mud/mud.html" ��http://www.laputan.org/mud/mud.html�, 1999-2005), Brian Foote and Joseph Yoder

� Quoted in Structure and Interpretation of Computer Programs, 2nd Ed., Harold Abelson and Gerald Jay Sussman with Julie Sussman , 1996

� Andrew Hunt and David Thomas, The Pragmatic Programmer, 2000

www.rmoug.org
RMOUG Training Days 2008

www.rmoug.org
RMOUG Training Days 2008

