/* Note this code does not compile, nor does it really make sense. It is simply
   to show the many forms of record definitions and declarations.
*/

-- To define a record type explicitly, use the following syntax in the
-- declaration section of a PL/SQL block:
TYPE type_name IS RECORD (field_declaration[,field_declaration]...);

-- where field_declaration means
field_name field_type [[NOT NULL] {:= | DEFAULT} expression]

-- where field_type is any PL/SQL datatype  except REF CURSOR  and where
-- expression yields a value whose type is equal to field_type. Here's a hairy
-- example that covers most of the possibilities:
TYPE tr_account IS RECORD (
   account_id
acc_types.t_account_id NOT NULL -- packaged subtype, constrained
,  account_owner
acc_types.tr_account_owner -- packaged record
,  related_accounts
acc_types.tas -- collection of disparate account IDs
,  created_dtm
TIMESTAMP WITH LOCAL TIMEZONE DEFAULT SYSTIMESTAMP -- precise time w/default
,  active_flg
accounts.active_flg%TYPE -- anchored to table column type
,  fraud_check
risk_types.to_fraud_check); -- packaged object type

-- A record type is defined implicitly by the existence of a table-like object
-- (table, view, synonym, cursor, or cursor variable). Once the record has been
-- defined explicitly or implicitly, it simply remains to declare variables or
-- parameters based on that underlying object or cursor:
PROCEDURE cancel_account(ir_account IN acc_types.tr_account) IS --parameter based on explicit type

   CURSOR c_mytab IS SELECT col1, col2, … FROM mytab WHERE …; --explicit cursor
   lr_mytab  c_mytab%ROWTYPE; --based on explicit cursor's ROWTYPE attribute
   
   TYPE trc_mytab IS REF CURSOR RETURN mytab%ROWTYPE; --define ref cursor
   lrc_mytab  trc_mytab; --declare ref cursor variable
   lr_mytab   lrc_mytab%ROWTYPE; --based on ref cursor's ROWTYPE attribute
   
   lr_myview  myview%ROWTYPE; --based on view's ROWTYPE attribute
   lr_mytab   mytab%ROWTYPE; --based on table's ROWTYPE attribute
   lr_theirtab  theirtab%ROWTYPE; --based on ROWTYPE attribute of private synonym's table
   lr_cust_account  acc_types.tr_account; --based on packaged, explicit record
BEGIN
FOR lr_mytab --based on implicit cursor 
   IN (SELECT col1, col2, … FROM mytab WHERE …) LOOP
   <do stuff>

   -- When working with the whole record variable, you may:
   lr_cust_account := ir_account; --copy one record to another (known as aggregate assignment)
   lr_old_account := NULL; --empty out a record by assigning NULL
   lr_new_account := lr_old_account; --empty by assigning an empty record
   
   -- Use the record as a parameter, or as the value returned by a function.
   lr_new_account := fr_create_checking_account(lr_cust_info, ls_cheezy_gift_choice);

   -- Direct SELECT or fetch into a record
   SELECT * INTO lr_account FROM accounts_vw WHERE account_id = in_account_id;
   
   -- Individual fields within the record are handled just like regular variables,
   -- the only difference being the dot notation used to access that part of the record, e.g.
   lr_account.active_flg := 'A'; -- dot notation to record's field
   lar_accounts(i).active_flg := 'I'; --dot notation to one of the records in a collection

END LOOP;



