

Dynamic Debugging and

 Instrumentation

of Production PL/SQL

Bill Who?
RMOUG, IOUG and UTOUG. 10 yrs

PL/SQL enthusiast. 16 yrs

•Andersen Consulting – SF, Denver

•New Global Telecom – Golden

•Structure Consulting Group – Houston

•Church of Jesus Christ of Latter Day Saints

•DBArtisans.com (place to keep my stuff)

Some Lessons Learned
There’s always another bug.

Involve users early and often.

Is it redundant? Simplify.

Test with dirty data and plenty of it.

Get another pair of eyes.

Document the code well.

If it isn’t simple, back up, reduce, reuse.

Have compassion on your successor.

Survey Says!
Strictly DBA? Strictly developers? Hybrids?

Written PL/SQL that was release to Prod?

Who has never had anything go wrong in that

production PL/SQL?

When things do go wrong, how long does it

take to find out what it is doing, what it did, why

it did what it did?

How did the users/mgmt appreciate your

handling of the issue?

OR

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding Instruments

Lifecycle of Production Problem
Become aware of a problem

Find the source of the problem

Fix the source of the problem

Repair issues the problem caused

Rebuild trust (costliest, longest step)

Improve so problem doesn’t happen again

Awareness of Problem
Non-instrumented:

•Silent Fester

•Side Effect

•New Guy

•Phone Call

•Email

•Pink slip

Instrumented: Proactive monitoring

Finding the Problem Source
Options without instrumentation:

•Hunt, poke, prod, peek, query, hope, trace,

explain, waits, OEM, TOAD, AskTom, …

Options with instrumentation:

A. Review what happened

B. Replicate and monitor in real-time

C. Add to proactive monitor

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding instruments

Instrumentation
Big word, but more familiar than it seems

•Dashboard of car and airplane

•Task Manager/Process Explorer

•Network Operations Center

•What do they have in common?

Instrumentation: the process of fitting applications

with code that directs runtime context to some

destination where it can be useful.

Runtime Context
Who, when, what was passed in, what

changed, time taken, errors and warnings

encountered, etc.

Four categories of runtime insight:

• Debugging – disabled by default

• Logging – enabled by default

o Error, warning, informational, metric

• Column-level audit data

• Monitor and Trace

Destination
Direct runtime context to stdout (screen), V$

views, a logging table, a log file on the

database host, a queue for asynchronous re-

direction, a DBMS pipe or alert, and other

slower, more complex alternatives like HTTP,

FTP and UDP callouts.

IMHO: Best option is writing to heap table

within an anonymous transaction

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding instruments

Oracle Instrumentation APIs?
Column-level Auditing

• 11g Flashback Data Archive (Total Recall)

•Most build custom triggers to capture change,

and tables to hold the history.

Metrics

•DBMS_UTILITY.get_time {DEMO}

•DBMS_PROFILER {DEMO}

Oracle Instrumentation APIs?
Logging/Debugging

•DBMS_OUTPUT (Dev only)

•DBMS_DEBUG & DBMS_DEBUG_JDWP (Yes)

•ORADEBUG (Rarely)

•DBMS_ERRLOG (No)

•DBMS_ALERT (No)

•DBMS_PIPE (Possibly) {DEMOS}

Oracle Instrumentation APIs?
Logging/Debugging

•DBMS_SYSTEM {DEMO}

<msg time='2012-02-03T18:30:40.283-07:00' org_id='oracle' comp_id='rdbms'

 client_id='bcoulam' type='UNKNOWN' level='16'

 host_id='R9AXR65' host_addr='fe80::cd94:25d3:ee1a:9777%11' module='PL/SQL

Developer'

 pid='15156'>

 <txt>WARNING! Here is my real-time msg logged to alert.log

 </txt>

</msg>

Oracle Instrumentation APIs?
Logging/Debugging

•UTL_FILE

•UTL_HTTP

•UTL_TCP

Oracle Instrumentation APIs?
Monitor and Trace Metadata

•DBMS_SESSION.set_identifier

o Sets client_identifier seen in V$SESSION,

AUDIT, trace and elsewhere.

•DBMS_APPLICATION_INFO

o set_module(), set_action(), set_client_info()

o set_session_longops()

•USERENV namespace and V$SESSION

{DEMO}

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding instruments

Sweet Instrumentation
Simple API to clock and record metrics

• Should handle nested timers

Simple API to tag sessions and long operations

• Should handle nested tagging

Simple API to write files

Simple API for static & dynamic log messages

• Must be independent of the calling transaction

Standard method of handling exceptions

Routines to gather client & session metadata so the APIs can

remain simple

Column-level auditing structures and triggers

Sweet Instrumentation
Dynamic Logging

• Off by default, and low overhead, so insightful

debug lines can remain in Prod code

• Can be turned on and off without Prod interruption

• Toggles kept in a table or application context

• Turn on for a PL/SQL unit or list of units, session,

end user or named process, IP address, domain

Sweet Instrumentation
Simple

dbg(‘Calling X with ‘||i_parm);

info(‘BEGIN: Nightly Reconcile’);

warn(‘X took ‘||l_diff||’ s too long’);

err();

tag();

startT(); <stuff> stopT(); elapsed();

Origin Metadata Transparently Derived

• Time, unit, line, caller identifiers

• End user identifiable from end-to-end

Sweet Instrumentation
Choice of Output

•Minimally: to table and screen

•Optionally: to file

•Nice to have: ftp, pipe, AQ, http, etc.

•Output must be transaction-independent

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding instruments

Resource Name License Purpose Location & Notes

Google Code Free Library of libraries http://code.google.com/hosting/search?q=label:plsql

Feuerstein's PL/SQL

Obsession

Free Repository of all things SF and

PL/SQL

http://www.toadworld.com/sf

QCGU (Quest CodeGen

Utility)

Free Full framework

Standards, Scripts, Template Factory,

Code Generation, + more

http://codegen.inside.quest.com/index.jspa
Latest incarnation of Feuerstein's vast reservoir of experience. (successor of QXNO, PL/Vision,

and PL/Generator.)

PL/SQL Starter Free Author's full framework. http://sourceforge.net/projects/plsqlframestart

Simple Starter Free Logging, Timing, Auditing,

Debugging, Error Handling, + more

Simplified PL/SQL Starter to just logging, timing and auditing components (and the low-level

packages they depend on). Designed to be used in one schema. Install and begin using in under

a minute.

GED Toolkit $120-

$1200

Almost full framework http://gedtoolkit.com
Includes APEX UI to administer jobs and tables. Monitor processing.

PL/Vision Free Framework, API Generator, + more http://toadworld.com/Downloads/PLVisionFreeware/tabid/687/Default.aspx

Replaced by QXNO and then QCGU. Not supported.

Log4ora Free Logging http://code.google.com/p/log4ora/
Fresh, full-featured logging library. Alerts. AQ. Easy to use. Good stuff.

ILO Free Timing and Tuning http://sourceforge.net/projects/ilo
From the sharp minds at Hotsos

Quest Error Manager Free Error Handling http://www.toadworld.com/LinkClick.aspx?link=685&tabid=153

Included in QCGU. But offered separately as well. Not supported.

Plsql-commons Free Collection of utilities, including

logging

http://code.google.com/p/plsql-commons

Log4oracle-plsql Free Logging http://code.google.com/p/log4oracle-plsql
Seems like an active project, but could not find code to download…

Log4PLSQL Free Logging http://sourceforge.net/projects/log4plsql
Popular, but aging and complex log4j analog in PL/SQL

Logger Free Logging http://sn.im/logger1.4
Recently orphaned when Oracle decommissioned its samplecode site. Simple. Easy to use.

Orate Free Logging http://sourceforge.net/projects/orate
Never used it, but has been around a while. Still active.

http://code.google.com/hosting/search?q=label:plsql
http://www.toadworld.com/sf
http://codegen.inside.quest.com/index.jspa
http://sourceforge.net/projects/plsqlframestart
http://gedtoolkit.com/
http://toadworld.com/Downloads/PLVisionFreeware/tabid/687/Default.aspx
http://code.google.com/p/log4ora/
http://sourceforge.net/projects/ilo
http://www.toadworld.com/LinkClick.aspx?link=685&tabid=153
http://code.google.com/p/plsql-commons
http://code.google.com/p/plsql-commons
http://code.google.com/p/plsql-commons
http://code.google.com/p/log4oracle-plsql/
http://code.google.com/p/log4oracle-plsql/
http://code.google.com/p/log4oracle-plsql/
http://sourceforge.net/projects/log4plsql
http://sn.im/logger1.4
http://sourceforge.net/projects/orate

PL/SQL

Starter

Framework

“Starter” too much?
Thousands of downloads, but not much feedback or

developer contributions.

21 services and 55 objects

Some shops only have one major app schema per DB

60 page doc and days to week learning curve

Security often done in directory server now

Common messages almost never used

Email-from-DB tables rarely used

Locking always needs customization

Simple Starter
LOGS, TIMER, ENV, gen_audit_triggers.sql

Library Main Routines Supporting Components and Notes

Auditing:

gen_audit_triggers.sql

APP_CHG_LOG, APP_CHG_LOG_DTL (tables)

Metrics:

TIMER (package)

startme()

stopme()

elapsed()

Uses DBMS_UTILITY

Debugging, Logging and Error Handling:

LOGS (package)

EXCP (package meant to be used only by

LOGS)

APP_LOG_API (pkg meant to be used only by

LOGS)

err()

warn()

info()

dbg()

APP_LOG (table)

TRIM_APP_LOG (scheduled job)

Connection Metadata:

ENV (package)

init/reset_client_ctx()

tag/untag()

tag_longop()

Uses DBMS_DB_VERSION,

DBMS_APPLICATION_INFO, DBMS_SYSTEM,

v$session and v$mystat.

File Operations:

IO (meant to be used primarily by LOGS)

write_line()

write_lines(0

p()

Uses UTL_FILE, DBMS_LOB

Dynamic (Table-Driven) Parameters/Properties:

PARM (package)

get_val() APP_PARM (table)

Extras (required for the seven libraries above to

function):

CNST, TYP, DDL_UTILS,

DT, STR, NUM (packages)

These are libraries of application-wide constants and

subtypes, build utility functions; date, string and number

manipulation routines.

Simple: Auditing
Run gen_audit_triggers.sql. Generates trigger

for every table in your schema.

Remove triggers not needed. Remove auditing

on columns not needed. Done.

Audited changes are recorded to

APP_CHG_LOG and APP_CHG_LOG_DTL

May need view or materialized view to simplify

access to audit data.

Simple: Metrics
TIMER package

• startme(timer name)
• stopme(timer name)
• elapsed(timer name)
Log elapsed times

Create separate automated processes to

monitor metrics, learn from them over time, and

notify when anomalies are detected.

Simple: Log & Debug
LOGS package

• info(msg), warn(msg), err(msg)
o record important data, expected and unexpected error

conditions

• dbg(msg)
o to document code and leave hooks for dynamic, real-time

logging

• set_dbg (boolean and directed)

Simple: Log Destination
Screen (10K msgs = 1 sec)

•Quick-and-dirty testing and debugging.

Log Table (10K msgs = 4 sec)

•A default job keeps the table trimmed to a

couple weeks of data.

File (10K msgs = 15 sec)

Pipe (10K msgs = 8 sec + 4 sec to log them)

Simple: Debug Parameters
Parameters in APP_PARM

•Debug (on/off, session, unit, user)

•Debug Toggle Check Interval (in minutes)

•Default Log Targets

(Screen=N,Table=Y,File=N)

Parameter values table-driven

Parameters can be temporarily overridden

through logs.set* routines

Simple: Monitor and Trace
ENV offers:

• tag/untag to modify module, action and

client_info

• tag_longop to track long operations

• init_client_ctx(), reset_client_ctx()

o Front end client should pass the user’s ID to the

DB through init_client_ctx, and reset_client_ctx

upon returning the connection to the pool.

Simple Framework: Install
Go to Sourceforge.net

Search for PL/SQL framework. First option.

Select Browse All Files.

• Drill to plsqlfmwksimple/2.1.

• Download and unzip Simple.zip

Start SQL*Plus as SYS

• If installing to existing schema, remove DROP and CREATE

USER statements.

• Run __InstallSimpleFmwk.sql

Done.

Agenda
Typical Production Problem Lifecycle

Define instrumentation

Oracle built-ins for instrumentation

Develop requirements of good instrumentation

Existing instrumentation libraries

Demos: Debugging & adding instruments

Putting it all Together
Solution Manager just called.

•After last night’s release, she is not getting

her daily file about the critical

problem/solution repository.

{LIVE DEMO real-time debugging, monitoring,

and adding instrumentation to two pages of

code}

Putting it all Together
Write and document public interface.

Write tests that all fail.

Write body in pseudo-code.

Fill in the algorithm, making sure routine does one thing and

one thing well. Ensure it uses assertions to check

assumptions. Clean. To standard. Formatted.

Wrap pseudo-code with log and debug calls, adding a little

runtime context. Voila! 3-birds with one stone.

Then I run the tests until they all work, using the

instrumentation and metrics if there is trouble.

Conclusion
Instrumentation should be in place before

production problems occur.

But it can be added easily after as well.

Adopt or build a standard library.

• It must be simple and easy to use.

Encourage or enforce its use.

Do it today! It’s easy and rewarding.

vs.

Q&A
Questions?

Contact: bcoulam@yahoo.com

Framework:

sourceforge.net/projects/plsqlframestart/

Instrumentation: Dials, Graphs, Guages

Car

Computer

Network Operations Center

Passenger Jet

