
Lazy Application Architecture

Save Months with a

PL/SQL Framework!



The Goal

• Encourage the Oracle community to care 

enough about our craft, our reputations and 

our free-time, to design and produce top-

notch backend code, quickly and reliably, 

using frameworks.



Agenda

• Laziness or Wisdom? The 80/20 Rule.

• Define application frameworks

• Database application frameworks

– Rarity “in the wild”

– Essential and common services

– DIY best practices

– Existing market

• Intro to retail frameworks

• Tour of the open source offerings

– Sample App and Case Study (4X faster 

development, 300% better results)



• “If you want something done quickly, give it to 

a lazy person.” - Joe



The 80/20 rule (Pareto Principle)

• Stellar programmers (the precious “20%”) 

know when to build and when to re-use.

• Development of the front-end usually begins 

with the technical lead selecting the 

framework: JSF, Spring, Silverlight, etc.

– It is a given that UI components will not be built 

from scratch.

• Why is the same not true of database 

development?

– Familiar with QCGU, PLVision, Starter, GED?



Define: Terminology

• Framework: An application framework is a 

collection of software modules or components 

that implement common functionality used by 

developers to write software in a rapid, 

consistent manner.

• Library: A collection of related components.

• Component: A simple, robust object or 

routine that implements a feature of the 

library.



Define: Applied to DB Dev

• A component is an Oracle object: table, view, 

trigger, type, context, sequence, packaged 

routine (func/proc), etc.

• A library is typically a PL/SQL package of 

related routines, and the components that 

support that feature family.

• A framework is the entire collection of 

templates, standards, and libraries 

(packages) that offer a set of features for 

reliable, rapid database development.



Rarity

• Good application architecture is crucial to the 

aspects of deliverables that users, managers 

and developers care about:

– Speed of delivery

– Cost

– Quality

– Flexibility

– Robustness

– Scalability

– Performance



Rarity

• This is no different from the criticality of 

location, site preparation, blueprints, 

foundation, and framing to a successful home 

building project.

• What happens when a structure is built 

without sufficient thought and investment in 

the site, foundation or framing?



Rarity



Rarity

• And yet, despite the values and risks, what 

are the first things to go when budgets and 

deadlines tighten?

– Testing

– Documentation

– Security

– Architecture, design and modeling

• Not what the user sees. Not an immediate 

problem. So these are seen as “fluff” and 

dispensable.



Rarity

• We are engineers, artisans and stewards.

– Cannot allow application architecture to be cut.

• PL/SQL is mature. Let’s act like it.

– If we aren’t developing with the same rigor and 

best practices of frontend development, it is our 

fault database architecture is shrugged off.

• What do frontend developers do?

– Pair programming, regression tests, 

instrumentation, DRY, KISS, TDD, assertions 

and…

– Re-use standard framework libraries.



Essential DB Framework Services

Needed by every database application:

• Security

• Parameters/Configuration

• Auditing

• Logging

• DBA Ops



Common DB Framework Services

Needed by those with backend processes:

• Application and Connection Metadata

• Debugging, Timing and Instrumentation

• Error Handling and Assertions

• String manipulation

• Number manipulation

• Date handling

• Messages and Email



Common Framework Services

• Locking

• IO

• Constants, Types, Cached Reference Data

• Shared SQL

• Directory Integration

• ETL

• Unit Testing

• Database code templates



Build or Buy?

• Qualities of a good framework:

– Solid exception handling scheme

– Good documentation, sample app, comments

– Clean, well maintained and tested

– Short, but intuitive library and component names

– Layer independence and non-circular

– Simple



The Value of Simple

Programs must be written for people to read, 

and only incidentally for machines to execute. 

- Donald Knuth

Simplicity is prerequisite for reliability. - Edsger

W. Dijkstra

Simplicity carried to the extreme becomes 

elegance. - Jon Franklin

Simplicity is the ultimate sophistication. -

Leonardo da Vinci



Existing Market Survey

• Retail Frameworks

– GED Toolkit

• Free Frameworks

– QCGU (was QNXO)

– PLVision

• Open Source

– PL/SQL Starter



PL/Vision



QCGU



GED Toolkit

• Re-usable libraries. Focus on insight into 

backend processing: inputs, outputs, state.



Existing Market Survey

• Retail Libraries

– Quest Code Tester

– PL/PDF

• Open Source or Free Libraries

– Quest Error Manager

– utPLSQL, PLUTO, SQL Developer Testing

– Log4PLSQL, OraLog, Orate

– PL/FLOW

– PLDoc



PL/SQL “Starter”

• Author’s free framework on SourceForge.

• Existed in one form or another since 1997.

• Version clock reset to v1.0 when released as 

open source. At 2.0 now (but 12 yrs old).

• Used in telecom, not-for-profit and energy 

industry.

• 2 years, 2 bugs. Simple and solid.

• Install takes 2 minutes.

• Can pick and choose some components.



Starter

Schema 

Model



Live Tour and Case Study

• Install

• Configure

• Included sample application built on Starter:

– Problem/Solution Repository

• Side-by-Side Case Study

– Problem/Solution Report with File and Email 

Capability



Report Requirements

• Director wants new backend report that reads the 

problem/solution repository, writes the results to a 

file, and emails the results.

• File name & email subject contain today’s date.

• Both should have a header with today’s date.

• Report should show the problem metadata, then the 

solution below that.

• Report should be robust, use exception handling for 

IO and SMTP problems, use standardized error 

messages, and include debugging and performance 

capture ability.

• Email To static in Prod, dynamic in lower DBs.



Results

• See reports1.sql (without framework) and 

reports2.sql (with framework) in Starter’s 

SampleApps\ProblemSolution folder.

• See the whitepaper for the list of problems 

with the viable solution in reports1.sql

• Developing with framework met 100% of the 

requirements, yielding 300% better code and 

it took 25% of the time!



Conclusion

• Frameworks essential to application 

architecture and can yield systems you can 

be proud of.

• Frameworks jumpstart new projects, saving 

weeks to months of risky wheel-reinventing.

– Is that laziness? Or wisdom?

• “Starter” a decent model for features every 

custom Oracle application needs, but is 

certainly not the only framework.



Your Design Legacy

Template 

OR



Online Evaluations

• No paper this year. Hurray! 

• But you need internet access: ioug.org

• Session 309



Questions?

• Contact Info: Bill Coulam (bcoulam@yahoo.com)

• If interested, download PL/SQL Starter from:

– www.dbartisans.com

– sourceforge.net/projects/plsqlframestart

– sourceforge.net/projects/plsqlstarter (May 2010)

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://sourceforge.net/projects/plsqlframestart
http://sourceforge.net/projects/plsqlframestart
http://sourceforge.net/projects/plsqlstarter
http://sourceforge.net/projects/plsqlstarter

