
SQL Bootcamp

 1 Paper 653

LLAAZZYY AAPPPPLLIICCAATTIIOONN AARRCCHHIITTEECCTTUURREE::

SSAAVVEE MMOONNTTHHSS WWIITTHH AA PPLL//SSQQLL FFRRAAMMEEWWOORRKK

Bill Coulam, dbartisans.com

INTRO
I have a good friend in Denver named Joe. He’s a Java architect from Arkansas, and a funny guy. He once quipped “If you
want something done quickly, give it to a lazy person.” Although there are faults with this maxim, it makes me chuckle
whenever I “lazily” re-use a framework to save weeks of development and am reminded of the good old days working with
Joe.

A truly productive architect or developer doesn’t just launch into a frenzy of typing and compiling the second they are given
requirements. Instead they put just the right amount of time into questioning, listening, pondering and planning. Stellar
producers have learned the hard way that more time spent up front yields less dead ends, shorter development and higher
quality software. They’ve also often learned that a great way to circumvent much of the initial architecture stage is to use pre-
built frameworks. Their empirically-based “laziness” says “Why re-invent the wheel?”

Using frameworks, libraries and toolkits is simply accepted as normal in front-end development. For them frameworks aren’t
just a good idea; their day-to-day work revolves around them: J2EE, Spring, JSF, Struts and Silverlight are just a few that come
to mind. In fact, picking the framework is often one of the first tasks planned for new web applications. Does the same hold
true for you as a database manager, architect or developer? Is the written and spoken word in your database project littered
with the name of a framework like PLVision, QCGU or PL/SQL Starter? Do your developers request and get permission to
use specialized libraries like PLUTO, PL/PDF or log4plsql? If not, why not? Using these pre-builts reduces risk and can shave
days, weeks, even months off time-to-completion (among other benefits).

In harmony with other PL/SQL evangelists, this paper is an attempt to encourage the Oracle community to care enough about our craft, our
reputations and our free-time, to design and produce top-notch backend code, quickly and reliably, using frameworks.

We’ll begin with a short overview of application frameworks and libraries for those who are unfamiliar, and how they fit into
software construction best practices. Trusted mentors and coaches, and books like those from Knuth, McConnell,
Hunt/Thomas, Fowler, Meyer, Beck and others1 offer further insight if the reader desires more.

Hopefully convinced your enterprise needs to acquire, build or improve a database application framework, we will touch on
what it should minimally contain, and then survey the open source and retail market of Oracle frameworks and libraries.

If policy or personal leanings compel you to build a proprietary framework, a few tips will be offered, gleaned from 15 years of
writing frameworks for custom Oracle applications. Getting the business to buy in to your vision and adopt the new
foundational layer is left as an exercise for the reader.

The paper concludes with a tour through the author’s open source PL/SQL Starter Framework as applied to a sample
application. Starter was primarily chosen as the basis of the code examples due to its small size and brevity. Requirements for a
new report against the sample application will be given, and we’ll see how traditional PL/SQL development and framework-
based PL/SQL compare. The time to develop each will be noted. The clarity and contrast between the two should be stark
enough to convert even the hardened cowboy coder.

Why build it yourself when someone already has? Take the lazy (but smart) approach. Use a framework. Joe would smile.

1 http://devlicio.us/blogs/billy_mccafferty/archive/2007/11/12/standing-on-the-shoulders-of-giants.aspx
 http://ianclatworthy.wordpress.com/books/

http://devlicio.us/blogs/billy_mccafferty/archive/2007/11/12/standing-on-the-shoulders-of-giants.aspx
http://ianclatworthy.wordpress.com/books/

SQL Bootcamp

 2 Paper 653

WHAT IS AN APPLICATION FRAMEWORK?
An application framework is a collection of software modules or components that implement common functionality used by
developers to write software in a rapid, consistent manner.

Examples of common frameworks are J2EE, .NET, JFC, Struts, Spring, Flex, Silverlight, Ruby on Rails, and Fusebox. There
have been many others in the past, and there will be many more. These frameworks were all born of a need to make
development of desktop and web applications easier, quicker and more reliable.

Custom frameworks built in-house are born of the same need. Although portions might have been anticipated and designed
up front, the majority of a proprietary framework is created after the problem domain is fully understood, to simplify existing
code, handle emerging commonalities, centralize algorithms, refactor, optimize, etc. Sometimes in-house frameworks integrate
3rd party libraries and provide a unifying face to an otherwise disparate collection of specialized utilities.

A framework must be well-built, tested and documented to be useful to its intended audience, ideally bundled with training
media or a sample application to demonstrate its use. Good documentation, training and enforcement are essential to beat the
learning curve and start realizing the efficiencies and boosts to quality frameworks promise.

Related to frameworks are libraries and components. Frameworks are collections of related libraries, and libraries are
collections of related components. A component is the finest-grain building block upon which a framework-based application is
built.

Applied to database application frameworks, the component may be implemented as any number of Oracle objects, including
triggers, types, tables, views and routines (I use the generic term routine when referring to a packaged function or procedure.)
The library will often present its interface within a PL/SQL package. And the framework is the entire collection of packages
and all the components of each.

WHY DATABASE APPLICATION FRAMEWORKS SEEM NOVEL

Attention to application architecture is crucial to the aspects of deliverables that users, managers and developers care about:
speed of delivery, cost, quality, flexibility, robustness, scalability, performance, and so on.

Unfortunately, eager management and markets usually shout louder than the wisdom of previous generations. Testing,
documentation, data modeling and application architecture are usually the first to be sacrificed on the altar of time and cost
savings. This should not happen. Software architecture and the data model are the two biggest slabs of any system's
foundation. They cannot be ignored or handled poorly. It's like building a beach house on two stilts propped in a pile of
rubble, expecting it to weather the next hurricane.

This myopic approach to software construction seems to be the sad default in too many shops that utilize PL/SQL as well.
Many perceive PL/SQL as a "toy" language, a necessary inconvenience, or a language not worthy of full attention like Java and
the C derivatives. Software best practices like Design by Contract, Test-First, Keep it Simple (KISS) and Don’t Repeat
Yourself (DRY) are given the cold shoulder as if they didn't apply to PL/SQL. Something "exotic" like a PL/SQL framework
is not even suggested, let alone removed from development planning. In the end, PL/SQL-based development is perceived as
“immature” and without the rigor of best practices and frameworks.

If this is the case where you work, it is time to correct this gaping hole in your application infrastructure.

WHAT SHOULD A DATABASE FRAMEWORK CONTAIN?
You know you've achieved perfection in design, not when you have nothing more to add, but when you have nothing more to take away. - Antoine
de Saint-Exupery

Once you embark on designing or finding a suitable framework, it helps to know what it ought to contain. Start with the low-
level features that every system needs, no matter what type of application you are building. Then proceed to functionality
specific to your application or industry.

ESSENTIAL LIBRARIES

Most database-backed systems need certain services before development begins:

SQL Bootcamp

 3 Paper 653

 Application and Connection Metadata – Tables and dynamic views to obtain and store application IDs, names,
versions, databases, environments, client and session info, and application contexts.

 Security – RBAC-based subjects (users), roles, permissions, and authorization of roles to applications, permissions
to roles, users to applications, and users to roles.

 Parameters/Configuration - table(s) and API for maintaining and querying configurable parameters for the
development, testing and production environments; parameters like timeouts, defaults, URIs, debugging toggles,
etc.

 Auditing - table(s) and API to answer when the business asks "Who did what, and when?" Could wrap Oracle's
built-in auditing capabilities, or your own custom solution.

 Debugging, Timing and other Instrumentation - table(s) and API to dynamically turn on debugging and timing.

 Error Handling - constants and API to standardize how exceptions are handled.

 String manipulation - API for wrapping common string operations, like delimited text to collection and vice versa,
string cleansing, format validation, encoding, and so on.

 Number manipulation - API for wrapping common numeric operations, like number validation, numeric
collection comparison, subtypes for anchoring and so on. If your systems are algorithm and math-centric, a math
or formula library could spawn from this initial effort.

 Date handling - constants and API for formatting, validating and displaying dates.

 Assertions - simple method of verifying assumptions and complying with design-by-contract tenets.

 Messages and Email - table(s) and API to handle text messages sent to various targets (table logs, emails, SMS,
files). Standardizes, sanitizes and can internationalize the informational, warning and error text fed to end users.

 Logging - table(s) and API to log messages of varying severity, with or without context, error stacks, etc.
Sometimes combined with the messaging/email library, sometimes kept separate.

 DBA-centric - API to provide version-agnostic, and error-trapping DDL operations for shops using automated
builds of database-specific scripts and code.

COMMON LIBRARIES

The following library features are not essential to every application, but are commonly found in systems heavily dependent on
backend database processes.

 Locking - table(s) and API to provide optimistic, pessimistic, logical and/or finer-grained locks than those
provided by Oracle for those areas that must be serialized or protected from concurrent modifications.

 IO - DB interaction with the OS and file system to read and write files, and write output to the screen on
demand.

 Codes - table(s) and API for getting and setting the types, categories, codes and literals used in most data models.

 Literals, types and standard cursors - package based static/standard elements, including pre-loaded, in-memory
collections of "busy" reference tables; used by both front and back-end code.

 Unit Testing - tables and API (really a full library or subframework) dedicated to storing, measuring and reporting
tests and test suites.

 Directory Integration - API for interacting with LDAP directory servers, particularly for confirming
authentication. In more advanced enterprises, application authorization and role-based security is also stored in
the central directory.

 ETL-related modules - API to wrap use of certain Oracle features and built-ins, like directory creation and
management, external tables, pipelining, partitioning, parallel DML and DDL, creation and management of
transportable tablespaces.

SQL Bootcamp

 4 Paper 653

 Code Templates - table(s)/files and API to access common PL/SQL code structures, as well as a common SQL
and PL/SQL code repository. Could wrap with a tool plugin or web-interface to allow team-based administration
and population.

Beyond this basic list, you'll need to examine other common Oracle built-ins you will be using (or are already using) to
determine if your framework is still lacking. Do you use Oracle AQ, Pipes, Alerts, VPD, Flashback, Materialized Views, etc?
Standardize their use and management into a packaged API. Then enforce and monitor their adoption. The first phase of your
custom framework is now complete.

INDUSTRY-SPECIFIC LIBRARIES

After finalizing your initial framework of low-level components, dive into getting working code for your customer as soon as
possible. Further modules for the framework should be added later as problems and details of the business come to light, and
opportunities for re-factoring become apparent.

Domain experience is an essential ingredient in any framework design effort. It is hard to try to follow a front-loaded, top-down design
process under the best of circumstances. Without knowing the architectural demands of the domain, such an attempt is premature, if not
foolhardy.2

The identification of more narrowly-focused framework additions depends on your powers of observation, and passion for
elegant, simple, reusable code. Perhaps your application has special needs in image-handling, web pagination, reporting, SOA-
fluency, geospatial mapping, inventory tracking, financial modeling, zip code distance calculation, ad-infinitum. Whatever your
system does, you just need to find the hotspots, the things done more than once and/or inconsistently. Factor them out into a
standardized, packaged API, and then introduce them into the code, testing vigorously as you go.

BEST PRACTICES AND TIPS FOR FRAMEWORK CONSTRUCTION
Simplicity carried to the extreme becomes elegance. - Jon Franklin

Industry-accepted best practices in software development produce robust, elegant software that will pay back huge rewards in
time, but won't be immediately apparent or appreciated. Sadly, that kind of recognition is reserved for the salespeople.
However, there are a handful of practices which had such immediate and significant benefit to the quality of my own work
products; I’d like to recommend them for building your own custom framework components. They are: commenting,
assertions, formatting, test planning and simplifying.

COMMENTING

Believe it or not, adding high quality comments for my interfaces and implementations led to far better code. As I was forcing
myself to think of my audience and how the interface would be interpreted and used, it exposed weaknesses in my
assumptions, errors in logic, and holes in the defensive portions of my code. One great piece of advice from the gurus was to
write comments that give a little history and explain your intentions, as this is the first and most vital information lost to the
mists of time and attrition. "What" and "how" we can usually figure out when reading legacy code; the "who", "when" and
"why" are quickly lost and forgotten.

ASSERTIONS

The same happened as I started adding assertions to check all assumptions about the parameters fed to my routines. It helped
me find numerous vulnerabilities. This made the code so much more reliable, I can't recommend it highly enough. Steven
Feuerstein has written a number of articles on this topic and their role within a solid exception handling library.

FORMATTING

With customizable templates and formatting tools built into many PL/SQL IDEs today, it is a marvel so much sloppy PL/SQL can
still be found. It takes no more than a second or two to format a huge package using these automated tools; so they should be
exercised every time you check code in. Using templates and beautifiers produces consistent, easily-read code that is much less
daunting to grasp and maintain than a tangled, undisciplined jungle. When everyone's code looks the same, the agile

2 Big Ball of Mud (http://www.laputan.org/mud/mud.html, 1999-2005), Brian Foote and Joseph Yoder

http://www.laputan.org/mud/mud.html

SQL Bootcamp

 5 Paper 653

development principle of shared ownership can be applied. This reduces fear, expands the spheres in which the developers are
cross-trained, and increases knowledge, capability and camaraderie in the team, on top of producing better work.

TEST PLANNING

Martin Fowler, at the Software Development conference (2000), started his session out with the plea to implement test-first
development. He basically said that if we fell asleep and didn't get a thing out of the lecture, he wanted us to understand that
test-first development would cut our development time in half, not double it as many dev managers fear. I have found this to
be true. Much like the exercise with commenting, the most valuable part of testing, for me, has been thinking about the tests
that should be written. The majority of bugs I find in my programs become apparent while I'm designing the tests. The few
remaining bugs are exposed by the tests themselves. Even if you don't adopt test-first practices, or invest in a testing
framework, you should still construct unit test conditions and cases that exercise all the logic paths in your libraries. If you
don't have time to automate this, then you can at least use the interactive debuggers that come with most PL/SQL IDEs
today, and the test suite tools in SQL Developer, PL/SQL Developer and TOAD.

SIMPLIFYING

Programs must be written for people to read, and only incidentally for machines to execute. - Donald Knuth3

Knuth's famous quote is very true. The human brain can synthesize just so much complexity before the eyes glaze over and
the synapses start misfiring. If the code is difficult to read, maintain and follow, mistakes will be made, lots of them. The best
advice I have for you when designing a custom framework can be found in the best programming books4. The reader is
encouraged to become familiar with their works and others, as there is no possibility of covering their collected wisdom here.
There is one common thread they all share: simplicity.

Simplicity is prerequisite for reliability. - Edsger W. Dijkstra

Simplicity is the ultimate sophistication. - Leonardo da Vinci

There is a reason this paper is peppered with quotes about simplification. Rabid dedication to simple, elegant code has been the
biggest factor in improving the quality and health of the systems I've designed and built. McConnell gives 16 tangible benefits
of simple routines in chapter 5 of Code Complete. Furthermore, McConnell spends two of the first chapters of Code Complete on
producing small, well-named, cohesive (single purpose), loosely coupled (independent) routines that use assertions and handle
exceptions well, with debugging aids built in. Of the 70 best practices encouraged by Hunt and Thomas5, about one quarter of
them are dedicated to producing clean, simple, orthogonal (independent), resilient routines, which use assertions, check
contracts, and handle exceptions well.

At times, when attempting to simplify and clean up my code, simply by force of habit, I shake my head wondering what I'm
doing spending so much time on seemingly unimportant minutiae. But inevitably, after coalescing a few of the redundant bits,
and blocks that really belonged in their own functions or procedures, everything in the module starts magically falling into
place, the design and flow of the program becomes so much easier to follow, the lines of code decrease dramatically, the
amount of testing and setup decrease, enhancement become easy, and quality shoots up. Every time that happens, I see why
the gurus dedicate so much space to the subject. The same principle of not stopping with the first draft applies to all aspects of
creative work.

This is even more important when designing a framework due to the amount of code that will eventually depend on its
components. Changing the interface to a component after it has been in use for a few years can be rather expensive, so
framework components need to be as well-designed, simple and reliable as possible from day one.

TIPS FOR BUILDING A FRAMEWORK

The framework's components will be called upon many, many times. If your code needs debugging capability, which would
you rather type, fmwk_debugging_api.debug_message() or dbg.p()? Long names may be better at self-documentation,
but they are really tedious to type hundreds of times. So use an abbreviation glossary, and create framework packages and
routines with short, but intuitive names. Ensure that whatever naming scheme you pick is consistently applied throughout the

3 Quoted in Structure and Interpretation of Computer Programs, 2nd Ed., Harold Abelson and Gerald Jay Sussman with Julie Sussman , 1996
4 My favorites are those by Steve McConnell, David Thomas, Alistair Cockburn, Steven Feuerstein and Thomas Kyte
5 Andrew Hunt and David Thomas, The Pragmatic Programmer, 2000

SQL Bootcamp

 6 Paper 653

framework so users can find their way around your libraries with little effort, and enjoy using them (because they aren't painful
to call upon or hard to remember). If you don't have them already, you should have PL/SQL programming standards and database
design guidelines that would contain the naming scheme just mentioned. The framework should be the poster child for the
proper application of the standards. Developers will look to the framework code as a reference implementation of the
standards, and as they are doing so, they will become more familiar and comfortable with it as well.

As mentioned earlier, ensure that your framework components check their assumptions and protect their inner workings by
using assertions. If you are unfamiliar, they are covered nicely by Steven Feuerstein in his books and several online articles.

Only catch expected exceptions. Let the inherent exception-handling mechanism in PL/SQL handle the rest. Ban the use of
WHEN OTHERS except when ignoring an error is required.

Document your API well. Provide usage notes and example code, caveats, design notes, alternatives rejected and why, parameter
valid values, Oracle versions supported, etc. Consider writing a high level document that introduces the framework and how to
use it appropriately. Even better would be sample code from a working application, and perhaps some in-house training.

Use overloading judiciously to provide alternatives when you anticipate differently typed parameters, or callers with more or less
context. Also use overloading or parameter defaults to give your libraries backwards compatibility when you can't avoid
modifying a framework API.

Decentralize system-wide constants into the libraries to which they relate; do not keep them all in one place. Such tight coupling
violates best practices. Prior to 11g, such centralization would cause mass invalidation when you added a constant.

Make use of autonomous transactions for your logging, messaging and debugging libraries. This enables you to capture
session/user/parameter metadata surrounding captured exceptions, even when the transaction rollback would have ordinarily
eliminated the new rows in your logging table.

Examine the libraries in your framework carefully. Ensure that the lowest-level modules, like IO and Exception Handling are
independent of other libraries, especially higher-level libraries (resulting in circular dependencies, a migrator's nightmare). Design
your framework in layers, and then write your custom applications on top of the framework. If you will have several
applications running on the same database that make use of the framework, keep the framework and its structures in one
schema (I like to name mine COMMON or CORE), and grant appropriately to the application schemas that will use it. See a
model of this simple design in Figure 1 at the end of this paper.

Make sure the framework code is versioned in a good source code control system. And provide a visual diagram or model that
guides your developers and helps them assimilate and understand the layers and dependencies quickly.

WHY RE-INVENT THE WHEEL?
Those who cannot remember the past are condemned to repeat it. - George Santayana

Before you write your own, it is a good idea to survey the current market, evaluate the offerings, and determine if anything
already meets most of your needs. 10 years ago, there were about two choices. Today there are a number to choose from.
Those that claim to be frameworks are lightly shaded.

Collection Name License Purpose Location & Notes

QCGU (Quest

CodeGen Utility)

Free Framework, Standards,

Scripts, Template Factory,

Code Generation, + more

http://codegen.inside.quest.com/index.jspa

Latest incarnation of Feuerstein's vast reservoir of experience.

Preceded by QXNO, PL/Vision, and PL/Generator.

PL/SQL Starter Free Author's starter framework.

No code-gen utilities.

http://sourceforge.net/projects/plsqlframestart

GED Toolkit $ Full framework http://gedtoolkit.com

APEX front-end to administer. Good design to monitor backend

processing.

PL/Vision Free Framework, API

Generator, + more

http://tinyurl.com/ycpf4xw

Replaced by QXNO and then QCGU. Not supported.

PLNet.org Free Repository of PL/SQL

libraries and utilities

http://plnet.org

Small (and aging) repository assembled by Bill Pribyl

Feuerstein

collection

Free Repository of new and old

code generation utilities by

http://tinyurl.com/yevmcoh

Much of Steven’s knowledge (and Robert Freeman’s and mine)

http://codegen.inside.quest.com/index.jspa
http://sourceforge.net/projects/plsqlframestart
http://gedtoolkit.com/
http://tinyurl.com/ycpf4xw
http://plnet.org/
http://tinyurl.com/yevmcoh

SQL Bootcamp

 7 Paper 653

Steven Feuerstein rolled up into Quest’s PL/SQL Knowledge Xpert. Steven’s old

collection seems to be no more or rolled into QCGU.

PL/SQL Interface

Generator

Free Table API Generator http://sourceforge.net/projects/plsqlintgen

PLSQLGenPkg Free Table API Generator http://sourceforge.net/projects/plsqlgenpkg

Quest CodeTester $ Testing Framework and

Software

http://www.quest.com/code-tester-for-oracle/

What started as Steven Feuerstein's attempt to bring agile-esque "test-

first" mentality to PL/SQL (utPLSQL), has been heavily reworked,

solidified, and given a UI.

PLUTO Free Testing framework http://code.google.com/p/pluto-test-framework

Fantastic new open source project.

utPLSQL Free Testing framework http://sourceforge.net/projects/utplsql

utPLSQL_DWH Free Testing framework for

Data Warehousing

http://sourceforge.net/projects/utplsqldwh

PL/SQL Unit Test

Framework

Free Testing framework http://sourceforge.net/projects/plsqlunittest

Quest Error Manager Free Error Handling http://tinyurl.com/27xkyr

Included in QCGU. But offered separately as well. Not supported.

Log4PLSQL Free Logging http://sourceforge.net/projects/log4plsql/

OraLog Free Logging http://sourceforge.net/projects/oralog

Orate Free Logging http://sourceforge.net/projects/orate

Hotsos Library Free Tuning http://sourceforge.net/projects/hotsos-ilo

PLDoc Free Documentation http://sourceforge.net/projects/pldoc/

PL/FLOW Free Workflow http://sourceforge.net/projects/plflow

UTL_FTP Free FTP from PL/SQL http://sourceforge.net/projects/plsqlftp

UTL_FTP Fair FTP from PL/SQL http://sourceforge.net/projects/utl-ftp

PLSQL FTP Free FTP from PL/SQL http://www.myoracleportal.net/blog1.php/2009/02/01/plsqlftp

Mail Tools Free Mail from PL/SQL http://www.myoracleportal.net/blog1.php/2009/02/01/plsqlemail

PL/PDF $ PDF Generation from

PL/SQL

http://plpdf.com/

Tidycode PL/SQL

Formatter

 Code Formatter http://equinoxbase.com/tpsf/

ClearSQL $ Code Formatter, Analyzer

and Diagrammer

http://clearsql.com/

There are a number of PL/SQL IDEs as well that greatly speed development and testing, like TOAD, PL/SQL Developer,
SQL Detective, SQL Developer and others. If readers are also interested in a jump-start to evaluating the IDE alternatives,
download from http://www.dbartisans.com/oracle/docs/PLSQL_IDE_comparison.xls .

TOUR A FRAMEWORK
Steven Feuerstein is the undisputed king of PL/SQL. In his passion for the language, he has written and improved numerous
utilities, libraries, and full frameworks to give us the boost and benefits promised by re-usable components. However, even his
older, skinnier framework “PL/Vision” is too large and comprehensive to cover here. The reader is highly encouraged to
evaluate PL/Vision and his new QCGU collection.

For this paper, to demonstrate the benefits of a database application framework, I needed a simple framework that wouldn’t
overwhelm readers with a dizzying array of options and overloads as Feuerstein’s does. The author’s own open-source
framework was the best fit.

Having built full frameworks several times, I set about in 1997 to build my own on the side, so I could take it with me
wherever I went and not have to re-write it every time. This became the "PL/SQL Starter Framework" which I released to
open-source use and development on SourceForge in 2008.

It currently compiles on 9i-11g, and is being enhanced to take advantage of conditional compilation, and the improved
backtrace stack. It wouldn't take too long to remove a few 10g and 9i features to make it compile on 8i as well. It can be used
as-is, or modified to suit your needs…or examined for merit or amusement. The full documentation on how to assemble
applications with the framework is, regrettably, a work in progress, but a little of that will be demonstrated here.

http://sourceforge.net/projects/plsqlintgen
http://sourceforge.net/projects/plsqlgenpkg
http://www.quest.com/code-tester-for-oracle/
http://code.google.com/p/pluto-test-framework
http://sourceforge.net/projects/utplsql
http://sourceforge.net/projects/utplsqldwh
http://sourceforge.net/projects/plsqlunittest
http://tinyurl.com/27xkyr
http://sourceforge.net/projects/log4plsql/
http://sourceforge.net/projects/oralog
http://sourceforge.net/projects/orate
http://sourceforge.net/projects/hotsos-ilo
http://sourceforge.net/projects/pldoc/
http://sourceforge.net/projects/plflow
http://sourceforge.net/projects/plsqlftp
http://sourceforge.net/projects/utl-ftp
http://www.myoracleportal.net/blog1.php/2009/02/01/plsqlftp
http://www.myoracleportal.net/blog1.php/2009/02/01/plsqlemail
http://plpdf.com/
http://equinoxbase.com/tpsf/
http://clearsql.com/
http://www.dbartisans.com/oracle/docs/PLSQL_IDE_comparison.xls

SQL Bootcamp

 8 Paper 653

I recently modified it to allow multiple application environments on the same database instance, which can save a company
Oracle licensing fees. Although most of it is technically at version 8.0 or so, due to the simplification and re-write, I reset the
version clock to 1.0. So despite the lower version number, it is mature and has been in use “in the wild” for years. It is
intentionally limited to the most common, low-level services that most PL/SQL applications could use. This way it is useful to
almost anyone out of the box, and easily customized.

Below are the schema layering, package hierarchy and conceptual data structures within the starter framework.

The arrows under the schema names represent dependence on "lower-level" Oracle accounts, where the objects in the lower
layers are accessed by public or private synonyms, and public or explicit grants from the lower layers to the higher.

 Oracle 8i - 11g Enterprise Database

Application Schema #1 Application Schema #2 Application Schema #3

   
Core Schema (where PL/SQL Framework and shared business entities reside)

Higher-level Packaged Libraries: ENV, MSGS, LOGS, TIMER, MAIL, LOCKS

Lower-level Packaged Libraries: STR, NUM, DT, PARM, IO, EXCP, CNST, TYP and UDTs.

Independent DBA package for agile continuous builds: DDL_UTILS

Generated or Customized Table API Packages: API_APP_LOG



SYS Schema: STANDARD, DBMS*, UTL*, and other built-ins

Figure 1: Account Layering within an Oracle Database

SQL Bootcamp

 9 Paper 653

INSTALLING THE STARTER FRAMEWORK

Here is what I would do if using the starter framework to build my first application.

o Download the zip file and documentation from SourceForge (1 min).

o Unzip to the directory of your choice. I used C:\Dev\Core. (10 seconds).

o Make sure there is an existing or new tablespace to contain the segments created by the framework DDL script. I
created a CORE_DATA tablespace.

o Decide where to install the framework. You can use an existing account or a new one that the script will create for
you. I went with a new one and named it CORE when the script below prompted me.

o As a user with DBA privs, preferably SYS, run __InstallStarterFmwk.sql and follow the prompts (20 seconds).

LEARNING THE STARTER FRAMEWORK

The framework is now installed. Now comes the hard part, the learning curve.

o Read most of the comments in __InstallStarterFmwk.sql so you can understand what was created. Follow each
subscript and read the comments in them as well, especially the table and column comments.

o Examine the sample data in the APP* tables. In the APP table you will see “Core”, which is the name of the
framework itself. You will also see some rows for the fictional Ticketing and Billing applications. The rows dedicated
to these applications throughout the APP* tables (especially APP_ENV) are only meant to demonstrate how one can
have multiple applications, and application environments (dev, test and staging, for example) all on the same database,
thus saving money over having dedicated boxes for each environment.

o Once familiar with the sample setup, you should drop the new accounts, modify __InstallStarterFmwk.sql,
_create_test_user.sql and _populate_sample_data.sql for your needs and then re-install.

o The model above only depicts a two-schema model. Most shops will want three, the upper schema serving as a
"gateway" account that owns no objects, but is granted privs to the tables, views, types, sequences and packages in the
2nd level application schema. The lowest, or 3rd level would again be the framework foundation schema that all the
apps on the database share. Create synonyms from the higher level schemas to the objects in the lower, or use an after
logon trigger to switch the current schema to the application schema.

o Now it is time to understand the libraries and components. Using the diagram above as a map, start at the bottom
packages and work your way up, reading the comment blocks in the package specifications either directly, or in the
provided HTML documentation.

It is finally time to use the framework. Build your application. As you run into feature requirements that the framework
provides or almost provides, use or enhance the provided libraries. If you think the enhancement could be used by others,
please submit it through SourceForge or send me an email.

SEEING THE FRAMEWORK IN ACTION

It would please me to include here a full application that exercises all the framework’s features. But the systems I've written
belong to the companies I've consulted or worked for, and secondly would make this paper several hundred pages long. The
alternative is to follow the lead of many Oracle articles and provide some quick-and-dirty, trivial code snippets. I don't feel this
does the framework justice, since there is so much more to it than those keyhole glimpses.

So I've attempted to go a little further, and created a small, working application that demonstrates portions of the starter
framework in use. It is found in the directory where you unzipped the Starter Framework, under
SampleApps\ProblemSolution folder. It requires 10g to function as it depends on the embedded PL/SQL gateway. It is a little
web application where you can record the various error messages, issues and bugs you encounter in the software, hardware
and tools you use in your development environment. Many times I've run across an odd Oracle error that I vaguely recall
seeing sometime in the past, but can't for the life of me remember the solution. Recording solutions as you go, in a simple
little app like this can help smooth development for your entire team as everyone contributes to the knowledge base of

SQL Bootcamp

 10 Paper 653

common problems and their solutions. Hopefully by the time you read this, it will also have file upload capability, so you can
attach screen shots, spreadsheets, emails, etc. As a little bonus, it also demonstrates the use of a multi-table, multi-column,
custom Oracle Text index that allows searching an entire application for a given search term or phrase with a single query.

With the starter framework installed, log in as a user with DBA privs, ideally SYSDBA, and run
__InstallProblemSolutionApp.sql. If you use the default responses to the prompts, this will create the SOL account, three
tables, and a few packages which make up the ui and data layers of this application. Examine the bodies of packages ps_ui and
ps_dml in particular to see a few pieces of the framework in use.

Since a technical article seems lacking without some code to examine, I'll conclude with some snippets from the
Problem/Solution application, commenting a bit on the functionality of the framework service being demonstrated. Only a
handful of the framework services are demonstrated here. Refer to the User Guide, HTML API docs and source code in the
unzip folder for full explanations of all the services.

SECURITY AND AUTHORIZATION

The most common requirement I see of modern systems is a data structure indicating which users are authorized to log into
the application, and what they are allowed to do within it. Authentication is usually handled by a call to the company’s
directory server, but authorization is still typically application-specific. It shouldn’t be. Rather than creating yet another set of
security tables, centralize them all into a single set. The Starter provides this. The tables implement a version of the standard
RBAC security model, providing a place for users, roles, permissions and the mappings between them. The usual
overengineering and complexity of some custom authorization solutions can be handled in the permissions table. In the
SEC_PMSN.pmsn_nm values, you can use a naming scheme that allows you to categorize and subdivide the application from
large-grained objects like web pages, down to individual actions and screen components.

PARAMETERS/PROPERTIES

Also required by every application is the need for a place to put important values, like the address of the directory and SMTP
servers, the time allowed before automatic logout, etc. The values are usually called application properties or application
parameters. They can be coded in the application, which is a bad idea, since the application has to be recompiled to modify the
value. They can be placed in configuration files, like .xml or .properties files. This is better, but modifying files on a production
server is fraught with security concerns and is prone to error. The best solution is to place properties in a table, which is much
safer and easy to modify in production on the fly. The Starter framework provides a nifty scheme for application properties.

Application properties are often different per environment. You may have a dev and test directory server, but a separate server
for production, for example. Rather than writing careful scripts that modify the properties every time the lower environments
are refreshed from production (which is very risky; oh, do I have stories), it is best to keep all the properties for all the
database environments in the same place. To do this in the Starter:

 Add the application metadata to the APP table.

 Add all the database environment metadata to the APP_DB table.

 Indicate which databases will house which environments in the APP_ENV table.

 Then add the shared and application-specific property names to the APP_PARM table.

 Finally associate the environments to the parameters in APP_ENV_PARM. Through the dynamic views of the
Starter, the application schemas using the framework will only see the parameters that pertain to them in that
database!

END-TO-END USER IDENTIFICATION

Thanks to recent regulation of the financial industry, concern over who did what, as tracked by data, has heightened greatly.
This is particularly difficult with modern application servers conserving resources through a connection pool to the database.
The Starter comes with two routines in the ENV package, named init_client_ctx and reset_client_ctx, which can be added to
the app server’s connection classes so that the authenticated end user is passed over every database connection. This value is
protected by the use of application contexts, and is visible to the standard Oracle Audit features, v$session, and the

SQL Bootcamp

 11 Paper 653

USERENV context’s client_identifier attribute. This value can be obtained using SYS_CONTEXT, or through
ENV.get_client_id, making it available for triggers that implement fine-grained auditing schemes.

I would have included examples of the security library in use, but the embedded gateway behind the sample app seems to have
trouble with custom authentication, unlike APEX and Oracle Application Server, which work just fine with OWA_CUSTOM
and other authentication schemes.

STANDARD MESSAGES AND LOGGING

APP_MSG contains standardized messages and boilerplate messages with placeholders. The boilerplate messages can use as
many contextual placeholders as you like. But one of the simplified versions of msgs.fill_msg can only accommodate up to 5.
Each placeholder is wrapped by the "@" symbol, but that is configurable. You would construct a little web page to make it
easy for your developers to view and add messages to the Core APP_MSG table. This prevents inconsistent user-facing
messages from being peppered all over your app and encourages re-use. You use the functions in the MSGS library to return a
static or substituted message, keyed by the message name or code.

Here is a snippet from the sample app's ps_ui.main page. When the page is called with the problem ID parameter filled, it
attempts to get more attributes about the problem from ps_dml.get_prob_sol. If for some reason the function raises a
NO_DATA_FOUND exception, the calling block traps it and gets the standard message, passing in the context (in this case
the problem ID), which is substituted for the placeholder. The standard message for code "Invalid Problem ID" is "Unable
to find data for Problem ID @1@, probably due to refreshing a page that already deleted that

problem ID." So the first placeholder gets filled by the problem ID, and the message is sent to the APP_LOG table in Core,
as well as returned to the user as the main page is refreshed with the pertinent warning message. I use logs.warn instead of
logs.msg or logs.err since it does not halt the application by default, but allows processing to continue. If the "Default Log
Targets" parameter in APP_PARM has been configured properly, or if the default is overwritten by a call to logs.set_targets,
the log would also be written to a file, and/or the screen via dbms_output. This output destination flexibility is a feature of the
framework's logging library.

 DECLARE

 l_msg app_log.log_txt%TYPE;

 BEGIN

 l_ps_data := ps_dml.get_prob_sol(l_prob_id);

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 l_msg := msgs.fill_msg('Invalid Problem ID',TO_CHAR(l_prob_id));

 logs.warn(i_msg => l_msg, i_routine_nm => l_proc_nm);

 main(i_msg => l_msg);

 RETURN;

 END;

DEBUGGING

The debugging component of the logging library is table-driven. It is meant to be dynamic, where you can turn on debug
logging in Production (without compiling or invalidating anything) for a specific session, package, named process, job, schema
or client identifier, even across RAC nodes. You simply update the value of the "Debug" parameter in APP_ENV_PARM to
any case-insensitive positive string (on, y, Y, yes, TRUE, etc.). With the Debug toggle turned off, all calls to log.dbg consume
miniscule overhead and are not observed. But when the toggle is on, the strings and context passed to log.dbg are logged to
the current log targets for the application (see Default Log Targets in APP_PARM_VW).

Examine this more complete snippet, again from ps_ui.prob_type, the routine that populates an HTML drop-down…

BEGIN

 logs.dbg('Get '||ps_dml.pgc_prob_type_codeset_nm||' codeset from Core', l_proc_nm);

 l_cv := codes.get_codeset_cur(i_codeset_nm => ps_dml.pgc_prob_type_codeset_nm,

 i_return_defn => FALSE);

 FETCH l_cv BULK COLLECT INTO lar_type_nm;

SQL Bootcamp

 12 Paper 653

 CLOSE l_cv;

 logs.dbg('Add the blank option to the front', l_proc_nm);

 lar_type_nm(0).LABEL := '';

 lar_type_nm(0).VALUE := '';

 logs.dbg('Load up the HTML drop-down list', l_proc_nm);

 htp.formSelectOpen(cname => i_name...

Note the calls to logs.dbg. When I code, I first write the public interface's comment block, then the interface, then the tests,
then the implementation. When I do the implementation, I first use pseudo-code in PL/SQL comments to outline the
algorithm. Later, as I'm filling in the code I wrap the pseudo-code, along with context (like given parameters and local
variables) into calls to logs.dbg. This accomplishes three things at the same time: comments the code, provides built-in debug calls
that can remain in production code, and enriches the debug calls with dynamic runtime context (something regular PL/SQL
comments cannot do).

ASSERTIONS

In the sample app’s ps_dml package there is a routine to delete solutions for a problem. In this simple routine below, we can
see the EXCP (Exception) library's assumption validation mechanism being used. It is called "assert." In its first use, the
TRUE Boolean tells the exception engine to raise an exception if the assumption of a filled parameter is not true. In the
second use, it is more of a warning scenario: unexpected, but not critical. So assert will shoot the given message to the screen
and the APP_LOG table for later analysis. As mentioned previously, the use of assertions greatly increased the quality of my
personal and team's deliverables. Use them. Check all your assumptions before proceeding with the body of the routine.

PROCEDURE del_sol(i_sol_id IN ps_sol.sol_id%TYPE)

IS

 l_proc_nm VARCHAR2(80) := gc_pkg_nm||'.'||'del_sol';

 l_rows_deleted INTEGER := 0;

BEGIN

 excp.assert(i_sol_id IS NOT NULL, 'Cannot delete a solution without a solution ID', l_proc_nm,

TRUE);

 DELETE FROM ps_sol WHERE sol_id = i_sol_id;

 l_rows_deleted := SQL%ROWCOUNT;

 excp.assert(l_rows_deleted > 0, 'No rows were deleted.',l_proc_nm,FALSE);

END del_sol;

WRITING TO FILE SYSTEM AND EMAILS

To demonstrate these capabilities of the Starter framework, I thought it valuable to include a fictitious case study. Let’s
pretend Sam and a co-worker named “Arty” are developers of the Problem/Solution sample app. They’ve just been given
requirements from the director to write a report in PL/SQL to periodically read the database and print the content out to a file
on the database host and email the report. Sam decides to test out a framework for its promised development speed,
robustness, and higher-quality deliverables. Arty scoffs at the research and prototyping he perceives as wasted time. Arty
prides himself on “getting the job done”. He will write the report using his typical one-off, design-on-the-fly approach. Having
studied this paper and the Starter framework, Sam challenges him, and asks the manager to compare results.

The remaining requirements of the report are that the file name and email subject should contain today’s date; it should have a
header including the date; and it should print out the problem metadata, with the longer problem description and possible
solutions below that. The infrastructure of the report’s code should perform good exception handling, use standardized error
messages, and include debugging and performance capture capability. Finally the user should be able to call the report ad-hoc
and pass in the email address desired as the report’s destination. If the report is being run in non-production environments, it
should go to the requested address. If run in production, it should only go to the IT director’s address.

SOLUTION AS WRITTEN BY THE EXPERIENCED, BUT HASTY “ARTY”

SQL Bootcamp

 13 Paper 653

CREATE TABLE sol_log(

 log_ts TIMESTAMP NOT NULL

,log_msg VARCHAR2(4000) NOT NULL

,log_src VARCHAR2(128) NOT NULL

)

/

CREATE OR REPLACE PROCEDURE log_msg

(

 i_msg IN VARCHAR2,

 i_msg_src IN VARCHAR2 DEFAULT NULL

) AS

 PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

 INSERT INTO sol_log

 (log_ts

 ,log_msg

 ,log_src)

 VALUES

 (SYSTIMESTAMP

 ,i_msg

 ,NVL(i_msg_src, 'Unknown'));

 COMMIT;

END log_msg;

/

CREATE OR REPLACE PROCEDURE print_send_ps_db

(

 i_email_addr IN VARCHAR2 DEFAULT NULL

)

AS

 CURSOR cur_read_ps_db IS

 SELECT prob_src_nm

 ,prob_key

 ,prob_key_txt

 ,prob_notes

 ,sol_notes

 ,seq

 FROM (SELECT ps.prob_src_id

 ,ps.prob_src_nm

 ,p.prob_key

 ,p.prob_key_txt

 ,p.prob_notes

 ,ROW_NUMBER() OVER(

 PARTITION BY s.prob_id

 ORDER BY s.sol_id) AS seq

 ,s.sol_notes

 FROM ps_prob p

 JOIN ps_prob_src ps

 ON ps.prob_src_id = p.prob_src_id

 JOIN ps_sol s

 ON s.prob_id = p.prob_id)

 ORDER BY prob_src_id

 ,prob_key

 ,seq;

 file_rec utl_file.file_type;

 Extra moving parts introduced here. The
new logging table and logging proc are
hasty one-off solutions that don’t take the
enterprise’s best interests into account.

 New logging table missing index on
timestamp and source.

 Default NULL. Would be better to know
where every message came from.

 Ah, the ubiquitous “Unknown” default.
That doesn’t help much

 Arty used to writing quick and dirty
procedures, instead of trying to organize,
group or modularize anything.

 Isolated a potentially shareable query
here. Could have placed behind package
proc or in package spec as cursor for re-
use.

 Declared a dozen variables to meet the

SQL Bootcamp

 14 Paper 653

 marker VARCHAR2(40); -- for debugging only

 idx INTEGER := 0;

 filename VARCHAR2(128) := 'ps_db_list_'||

 TO_CHAR(SYSDATE,'YYYYMMDD')||'.txt';

 file_err_msg VARCHAR2(256) := 'Unexpected error with UTL_FILE ops

after marker @marker@ in print_send_ps_db.';

 -- email variables

 email_body CLOB := EMPTY_CLOB();

 db_name VARCHAR2(10);

 to_addr VARCHAR2(80);

 subj_hdr VARCHAR2(100);

 -- performance test variables

 begin_time NUMBER;

 end_time NUMBER;

 PROCEDURE handle_line(i_line IN VARCHAR2) IS

 BEGIN

 utl_file.put_line(file_rec, i_line);

 email_body := email_body || i_line || CHR(10);

 END handle_line;

BEGIN

 SELECT UPPER(name)

 INTO db_name

 FROM v$database;

 IF (i_email_addr IS NULL AND db_name <> 'MY10G') THEN

 log_msg('Error: NULL i_email_addr passed to print_send_ps_db.

Destination address should be identified.');

 RAISE_APPLICATION_ERROR(-20001,'Parameter i_email_addr is empty.

Please pass the desired destination of the emailed report.');

 END IF;

 -- Remove prior file run on same day

-- BEGIN

-- utl_file.fremove('CORE_DIR', filename);

-- EXCEPTION

-- WHEN utl_file.invalid_operation THEN

-- log_msg('ERROR: Cannot remove file '||filename);

-- END;

 begin_time := dbms_utility.get_time;

 marker := 'fopen';

 file_rec := utl_file.fopen('CORE_DIR', filename, 'W', 32767);

 -- Read entire Problem/Solution database

 FOR l_rec IN cur_read_ps_db LOOP

 idx := idx + 1;

 -- Write each problem and its possible solutions to a file

 -- check to ensure file is open and handle is valid

 BEGIN

 marker := 'is_open';

 IF (utl_file.is_open(file_rec)) THEN

 -- write to file and email body at the same time

 marker := 'put_line';

 IF (idx = 1) THEN

proc’s requirements. OK, but immediately
tells me the proc does too much.

 Poor man’s “marker” variable for
dbms_output debugging.

 File_err_msg not really a standardized
message as the requirements called for.
Isolated here and not re-usable.

 This is good. Factored out the repetitive
work and ensured that processing of the
cursor only had to happen once.

 Hmm. Call to v$database belongs in its
own routine. Remembering to wrap with
UPPER good, but what if he forgets
sometimes?

 Good. Checking condition. But presence
of RAISE_APPLICATION_ERROR
screams for exception-handling standard.

 Looks like Arty had some trouble with W
and A file modes. Would be better if file
ops were standardized in common
package so he doesn’t have to think about
this stuff and learn by trial and error.

 Directory hard-coded

 Questionable whether this is necessary,
especially on every iteration.

 Manually named markers are better than
numeric, but still prone to copy-paste

SQL Bootcamp

 15 Paper 653

 -- report header

handle_line('**

**********************');

 handle_line(' Printout of the

Problem/Solution Database');

 handle_line('

'||TO_CHAR(SYSDATE, 'YYYY Month DD'));

handle_line('**

**********************'||CHR(10));

 END IF;

 handle_line('Type [' || l_rec.prob_src_nm || '] Key [' ||

 l_rec.prob_key || '] Error [' ||

l_rec.prob_key_txt || ']');

 handle_line('Comments:');

 handle_line(CHR(9) || l_rec.prob_notes);

 handle_line('Solution #'||l_rec.seq||':');

 handle_line(CHR(9) || l_rec.sol_notes || CHR(10));

 handle_line('--

');

 ELSE

 RAISE utl_file.invalid_filehandle;

 END IF;

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR(-20001,

 REPLACE(file_err_msg,'@marker@',marker));

 log_msg(REPLACE(file_err_msg,'@marker@',marker),

 'print_send_ps_db');

 END;

 END LOOP;

 BEGIN

 -- Now we are done writing lines, flush buffer (so line can be

read immediately) and close file

 marker := 'fflush';

 utl_file.fflush(file_rec);

 marker := 'fclose';

 utl_file.fclose(file_rec);

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR(-20001,

 REPLACE(file_err_msg,'@marker@',marker));

 log_msg(REPLACE(file_err_msg,'@marker@',marker),

 'print_send_ps_db');

 END;

 end_time := dbms_utility.get_time;

 log_msg('Reading table and writing to file took '||

 ROUND((end_time - begin_time),2)||' seconds.');

 begin_time := dbms_utility.get_time;

 -- Send the file to my phone if in Production, otherwise to my email

address

errors.

 Divider string should be standardized,
placed in a Reports or Strings or
Constants package spec for re-use.

 WHEN OTHERS is generally a bad idea.
Although this captures all unexpected, it
masks the real error and source of it.
Better to have common approach in re-
usable package to trap and handle all the
known UTL_FILE exceptions. Proc
name hard-coded, which can change and
get out of sync.

 Comments are good, but if the comments
or markers aren’t logged during
processing in chronological order for
debugging, has the requirement been met?

 Again with the WHEN OTHERS
headache-waiting-to-happen.

 Bug. Arty’s unit test (if any) must have
missed that times from dbms_utility must
be divided by 100 to represent seconds.

 Huh? Might have been Arty’s phone and
email during dev, but not in production
surely. Better to write re-usable, modular

SQL Bootcamp

 16 Paper 653

 IF (db_name <> 'MY10G') THEN

 to_addr := i_email_addr;

 subj_hdr := 'Unit Test Report: ';

 ELSIF (db_name = 'MY10G') THEN

 to_addr := 'bcoulam@boguscompany.com';

 subj_hdr := 'Production Report: ';

 END IF;

 -- This line requires that UTL_MAIL be installed (run

$ORACLE_HOME/rdbms/admin/utlmail.sql and prvtmail.plb)

 -- and that your SMTP host be placed in the database init

parameters, as in:

 -- ALTER SYSTEM SET smtp_out_server='smtp.yourdomain.com'

SCOPE=SPFILE;

 -- Finally one must grant execute on UTL_MAIL to the schema housing

this proc.

 UTL_MAIL.send(sender => 'oracle@'||db_name||'.net',

 recipients => to_addr,

 subject => subj_hdr||filename,

 message => email_body);

 end_time := dbms_utility.get_time;

 log_msg('Sending email took '||

 ROUND((end_time - begin_time),2)||' seconds.');

END print_send_ps_db;

/

component that is self-documenting.

 Hard-coded DB names is a bug waiting to
happen. Better to put the director’s
address in an application property or use
a distribution list in case the people
behind the role change.

 Arty had to install UTL_MAIL to get this
working. Interface is clean, but still better
to encapsulate in a wrapper package, just
in case the implementation of emailing
from within the database ever had to
change (as it has three times since 8i).

 Would be better if sender were stored in
an application property in a table, or
derived in a re-usable function, not one-
off hard-coded as a literal here.

 Bug. See above. Must divide by 100.

Arty’s solution works, but because he had to re-familiarize himself with UTL_FILE, CLOB initialization, DBMS_UTILITY
and install and learn UTL_MAIL, there were issues and it took over ten iterations before all the initial bugs were worked out.
Despite Arty’s demonstrated competence, this 185 line solution took Arty almost 4 hours to work through the kinks and
deliver. He had to introduce 2 new moving parts with no plan for re-use or maintenance, and due to poor debuggability and
lack of standardized messages, it did not meet 100% of the requirements. He’s been writing PL/SQL for a while. But he hasn’t
really taken the time to change his habits and start applying software best practices, like Don’t Hardocde, Don’t Repeat
Yourself and Simple Routines. This opens up his work for all sorts of bugs, some of them obvious, some of them lurking. His
solution is frankly a bit fragile. It takes some time to digest and understand.

FRAMEWORK SOLUTION AS WRITTEN BY “SAM”

INSERT INTO app_msg

VALUES (

 app_msg_seq.nextval, env.get_app_id('PSOL'), 'Missing Parameter'

,'The call to @1@ was missing a value for parameter @2@. Please correct

and re-try.'

,NULL, NULL

);

COMMIT;

CREATE OR REPLACE PACKAGE reports

AS

rpt_div_line CONSTANT VARCHAR2(80) := RPAD('*',80,'*');

-- Pass an email address if on non-Prod

PROCEDURE print_and_send_ps(i_email_addr IN VARCHAR2 DEFAULT NULL);

END reports;

/

CREATE OR REPLACE PACKAGE BODY reports

 He adds a standardized message for the
parameter-checking assertion. No need
for a message about the file –handling
errors; that is all encapsulated in the IO
framework package. This message can
now be re-used for all future routines in
the Problem/Solution application that are
missing expected parameters.

 Sam chose to use a package. Great idea.
Among other benefits, now there is a
public place to put re-usable things for
reporting, like the 80-char * divider line.

SQL Bootcamp

 17 Paper 653

AS

PROCEDURE print_and_send_ps

(

 i_email_addr IN VARCHAR2 DEFAULT NULL

)

IS

 l_lines typ.tas_maxvc2;

 l_email CLOB := EMPTY_CLOB();

 l_filename VARCHAR2(128) :=

'rpt_probsol_'||TO_CHAR(SYSDATE,'YYYYMMDD')||'.txt';

 PROCEDURE handle_line(i_line IN VARCHAR2) IS

 BEGIN

 l_lines(l_lines.COUNT+1) := i_line;

 l_email := l_email || i_line || CHR(10);

 END handle_line;

BEGIN

 excp.assert((env.get_env_nm <> 'ProbSol Prod' AND

 i_email_addr IS NOT NULL)

 OR env.get_env_nm = 'ProbSol Prod',

 msgs.fill_msg('Missing Parameter', env.who_am_i,

'i_email_addr'), TRUE);

 timer.startme('read_db_write_file');

 logs.dbg('Checking for file '||l_filename);

 IF (io.file_exists(l_filename)) THEN

 logs.dbg('Deleting file '||l_filename);

 io.delete_file(l_filename);

 END IF;

 logs.dbg('Reading and storing all problem/solution rows');

 FOR l_rec IN ps_dml.cur_read_ps_db LOOP

 IF (l_lines.COUNT = 0) THEN -- Add header

 handle_line(str.ctr(RPT_DIV_LINE));

 handle_line(str.ctr('Printout of the Problem/Solution

Database'));

 handle_line(str.ctr(TO_CHAR(SYSDATE, 'YYYY Month DD')));

 handle_line(str.ctr(RPT_DIV_LINE)

 ||CHR(10));

 END IF;

 handle_line('Type [' || l_rec.prob_src_nm || '] Key [' ||

 l_rec.prob_key || '] Error [' || l_rec.prob_key_txt || ']');

 handle_line('Comments:');

 handle_line(CHR(9) || l_rec.prob_notes);

 handle_line('Solution #'||l_rec.seq||':');

 handle_line(CHR(9) || l_rec.sol_notes || CHR(10));

 handle_line('--');

 END LOOP;

 logs.dbg('Writing '||l_lines.COUNT||' to file '||l_filename);

 io.write_lines(i_msgs => l_lines, i_file_nm => l_filename);

 Most of the variables required for these
complex IO and email operations are
contained in the framework package. Sam
only needs 3 new variables to complete
the job.

 Sam also encapsulates the repetitive line-
handling like Arty. Good.

 Assertion routine handles much for Sam so he
doesn’t have to worry about it, like re-raising
the exception after logging the message to
desired output targets (default is table and
screen). Use standard error message too.

 Standardized timing mechanism. Can have multiple
and nested timers within the same session.

 logs.dbg both annotates the code and offers debug
trail. Automatically logs which routine and line
number called it, so no more hard-coding the
name.

 Extra features offered in IO package inspired Sam
to make his routine even more robust, ensuring
older runs are cleaned up.

 Because Sam took his time to think, he put the
report’s query in a public cursor in the PS_DML
package. This shortened his code and centralized a
useful piece of logic.

 Using constant instead of literal for
divider. Nice. If it ever changes, only one
line has to change, not everyone that
copied the literal over the years.

 This part is the same as Arty’s solution,
but overall the loop is much shorter and
less complex.

 One line to write the entire report. Sweet.
Directory defaults to configurable application
property in APP_ENV_PARM. File mode

SQL Bootcamp

 18 Paper 653

 timer.stopme('read_db_write_file');

 logs.info('Reading DB and writing file took '||

 timer.elapsed('read_db_write_file')||' seconds.');

 timer.startme('write_email');

 logs.dbg('Sending report to director if in Production, otherwise to

given email address');

 mail.send_mail(i_email_to => i_email_addr,

 i_email_subject => l_filename,

 i_email_body => l_email,

 i_env_list => 'ProbSol Dev, ProbSol Test');

 mail.send_mail(i_email_to => 'bcoulam@boguscompany.com',

 i_email_subject => l_filename,

 i_email_body => l_email,

 i_env_list => 'ProbSol Prod');

 timer.stopme('write_email');

 logs.info('Writing email took '||timer.elapsed('write_email')||'

seconds.');

END print_and_send_ps;

END reports;

/

defaults.

 logs.info not dynamic like logs.dbg. This note
goes into APP_:LOG permanently.

 Encapsulated and tested timing mechanism
correctly handles the division by 100 that Arty
missed.

 This ability to tie email targets to different
destinations based on the framework’s ability
to transparently detect the DB and
environment it is running from is nice. Avoids
hard-coding to names that can and do change
over time. If implementation of the mail send
is ever changed under the cover, no
dependent code has to change.

 Ideally though, this routine would not do two
things (file and email). It should break the
email feature into a separate routine of the
reports package, possibly modified to be more
re-useable by other reports.

Even as a novice to the framework, once Sam had the proper metadata in the APP_ENV, APP_ENV_PARM and APP_MSG
table, everything else was handled for him. He just had to plug pieces in and type in parameter values. He only had one bug to
iron out, and then it compiled and worked. His solution took 50% less code, met 100% of the requirements, is bug-free, and is
at least 300% more clean, robust, maintainable and readable. Best of all, it only took Sam a little over 1 hour to complete his
version. Thus it took 25% of the time to obtain 3 to 4-fold better code. The manager was hooked. Sam was given
development lead position. Arty was sent to mandatory pragmatic programmer training and assigned a slew of work when he
returned to refactor years of cobbled-together junk code.

CONCLUSION
As intelligent observers, engineers and scientists, it is incumbent on us to learn from history. And history teaches us that a
solid foundation (data model and application framework) is not an option. Doing it right yields tremendous improvements in
speed of delivery, cost, quality, flexibility, robustness, scalability, performance, and so on.

The author's starter framework provides a decent frame of reference and model for certain features that every database-backed
application stack needs, but it is by no means complete for your business, nor the only available framework. Do evaluate the
market’s other offerings. If you are at the start of a project, or new architectural march, they could jump-start your efforts and
save months of custom development work.

Best wishes to my fellow database artisans who care deeply about your craft and take pride in your work; you create the
backbone and nervous system upon which the Information Age depends.

	Intro
	What is an Application Framework?
	Why Database Application Frameworks Seem Novel

	What should a Database framework contain?
	Essential Libraries
	Common Libraries
	Industry-specific Libraries

	Best practices and tips for framework construction
	Commenting
	Assertions
	Formatting
	Test Planning
	Simplifying
	Tips for building a framework

	Why Re-invent The Wheel?
	Tour A Framework
	Installing the Starter Framework
	Learning the Starter Framework
	Seeing the Framework in Action
	Security And Authorization
	Parameters/Properties
	End-to-End User Identification
	Standard messages and Logging
	Debugging
	Assertions
	Writing to File System and Emails
	Solution as written by the experienced, but hasty “Arty”
	Framework Solution as written by “Sam”

	Conclusion

