
1 

Using LDAP as an Oracle Professional, Part I : 

The Snowball Effect 

 
 

It often seems that new Oracle releases include features you‟re not likely to use in the near future, like AQ, 

Oracle Wallet, iFS, analytics, etc.  You make a mental note and move on.  One new feature, LDAP 

integration, should not be dismissed so quickly. 

 

Unless you‟ve been comatose for the last five years, you‟ve heard of LDAP already.  Most documents that 

describe its meteoric rise use words like “mushroom,” “explode,” and “snowball.”  The snowball effect is 

the best metaphor for LDAP‟s brief history.  It also sums up how it will catch on in your company once 

given life in at least one application.  All it takes is a gentle nudge.  Beyond that, due to its inherent 

qualities and usefulness, it will quickly grow (in a good way), almost as if under its own momentum. 

 

Oracle 9i is the terminal release of Oracle Names, and the preferred method for Oracle naming is now in an 

LDAP directory.  Oracle is currently migrating many of their applications to begin using an LDAP 

directory server for security and application metadata purposes.  Part of this push is seen in their new C and 

PL/SQL LDAP APIs.  Even Microsoft, the “ole grim reaper” of the computing world‟s standards, has 

joined in.  They wrote the core of Windows 2000 around an LDAP v3 server. 

 

LDAP isn‟t over-hyped vaporware or another ignored effort from the IETF or W3C.  It‟s a simple, widely 

accepted, useful piece of your technology pie.  Much like ASCII, HTML, TCP/IP and XML, it‟s here to 

stay.  Time to sink your teeth in! 

 

We will look at how LDAP began, its best qualities, basic terminology, LDAP URLs, searches and filters, 

as well as where Oracle is headed with LDAP.  A case study is presented where the author converted a 

custom, table-based, web security framework to one using an LDAP directory server.  There is a great 

library of resources on the „net and in Oracle documentation if you need to dig into more advanced LDAP 

concepts.  See the partial list  at the end of the article.   

 

How Did LDAP Get Started? 
Most IT environs in the mid-nineties were a heterogeneous mess: proprietary this, distributed that, out-of-

sync and closed-off everything.  Client-server computing was the real catalyst to this horror, where every 

application had become an island unto itself, often referred to as a “silo.”  This created real problems when 

a user or application needed up-to-date information about human or physical resources, or if one of those 

resources needed to be updated or removed.  The data was scattered in many systems and spreadsheets.  

Instead of getting your data from the main pot, it was like the pot had exploded; you now had to scurry 

around, looking for the juicy chunks if you wanted any lunch. 

 

Rather than deal with the mess, IT shops usually wound up creating yet another independent silo of critical 

data, or outsourcing another million-dollar contract to tie some systems together.  Within a short time, users 

were being overwhelmed by passwords and how to access and use scores of mainframe and PC systems.  

IT managers were also being overwhelmed supporting so many disparate applications and their frustrated 

users.  Then network computing burst onto the scene!  The problems of distributed data and computing 

multiplied ten-fold as all these silos were wired together.  Everything intensified.  In an age blessed with 

technology, it still took forever to get anything done. For example, from 1995 to 1998, the world‟s largest 

long distance provider had managed to create 38 separate, and largely unique, web application 

infrastructures (my team was hired to consolidate them into one). Things were just plain nuts. 

 

Standardization and some centralization were needed, where critical data about departments, customers, 

employees, credentials, access controls, offices, etc. was kept in one place.  Since it would be used by 

different applications and potentially thousands of internal and external users, the solution needed to be 



2 

flexible, robust, scalable, secure and fast.  It also had to handle internationalization, delegated 

administration and replication out of the box (to accommodate language, time-zone and latency issues). 

 

Enter X.500 and the directory servers based upon it.  Unfortunately, X.500 was a decision-by-committee 

standard.  It was bloated, resource intensive and complex.  Its method of accessing the directory server was 

called the Directory Access Protocol (DAP), which required the 7-layer OSI stack and more computing 

power than early 90‟s PCs had.  Directory server technology was the answer, but X.500 and DAP, were 

not.  So a University of Michigan team developed a lightweight version of DAP that could operate over the 

TCP/IP protocol.  Originally called DIXIE (Directory Interface to X.500 Implemented Efficiently), it was 

transformed into an IETF standard by Tim Howes, Steve Kille and Wengyik Yeong in 1995.  LDAP was 

born.  You can read Tim‟s story at http://home.netscape.com/columns/techvision/innovators_th.html.  

 

Much like Apache and Linux, LDAP was provided to the community free of charge.  LDAP had many 

early adopters from 1995 and 1996 and not just for pilot projects either.  Netscape was a big contributor as 

well, hiring Mr. Howes in 1996 and releasing their C and Java LDAP APIs to the public.  Clayton Donley 

wrote PerLDAP a short time later.  Finally, any application or system that could speak TCP/IP, or make use 

of the free APIs, could be directory-enabled and realize the huge simplicity, cost, and peace-of-mind 

benefits that directories offered.  

 

In two short years, LDAP gained amazing footholds, solving problems and saving a lot of pain and cash at 

even the biggest corporations in the world (Ford, Citibank and Home Depot, to name a few).  On the server 

side, Netscape dominated mindshare, followed by Novell, IBM, lesser-knowns, Oracle and open source 

offerings.  Even Microsoft joined the fray, basing the core of NT 5 (now Windows 2000) on an LDAP 

directory server.  Things were no less busy on the client side.  In fact, Netscape, IE, Eudora, Exchange and 

Lotus Notes have had LDAP features for some time.  Nowadays, vendors of all classes of software have 

announced support for LDAP, or plans for such.  

 

Where Is Oracle Going With LDAP? 
Note: Some of this section comes from 8i and 9i documentation.  Some I took from a PR-filtered reply from 

the directory team at Oracle. 

 
From our vantage point as the customer, Oracle‟s first foray into LDAP showed up as an optional naming 

method in 8.1.6.  Instead of storing the connection descriptors in your local tnsnames.ora file, or your 

Oracle Names server, you could store them in a directory server, namely, NDS, AD or OID. 

 

Starting in version 8.1.7, Oracle provided an API to work with data in a directory server.  The API came in 

both C and PL/SQL flavors.  Unfortunately, the PL/SQL version, a supplied package named 

DBMS_LDAP, only had a subset of the C API, and there were a number of minor bugs associated with it 

 

With 9i, NDS is no longer supported for centralized naming, the PL/SQL API is fairly complete, and with 

9.0.1.2, the private memory leak in DBMS_LDAP is fixed.  Along with the API, Oracle provides some 

sample programs, a developer‟s guide, and the usual LDAP command line tools to form the “OID SDK 

release 3.0.1.”  If you need to access OID or another directory server from Java, you turn to the JNDI 

classes, which are part of the J2SE and J2EE from Sun. 

 

The 9i docs note that in future versions Oracle Names will no longer be supported as a centralized naming 

method.  Oracle strongly recommends migrating to directory naming instead (using OID).  I also noticed 

that Oracle‟s support for third-party directories was getting narrower, rather than wider.  Anticipating that 

customers who had investments in Oracle Names or a non-Oracle directory server would be a little upset, I 

contacted Oracle to show me what‟s inside their crystal ball. 

 

In short, they‟re totally committed to the benefits of “centralizing and standardizing” on an LDAP v3 

directory server, in this case, OID.  Although OID can be purchased separately, it is included as a 

http://home.netscape.com/columns/techvision/innovators_th.html


3 

necessary part of 9iAS EE or 9i DBMS EE.  In the future, OID will be needed for most applications that 

Oracle sells.  Apparently, great forces are stirring to achieve this. 

 

A directory server is good for storing anything that is updated infrequently and should be shared, not just 

user, group and network information.  Oracle seems to be doing just that, using OID to centralize 

application configuration and metadata as well.  Their PR response read 

 

“…we have now marshaled all of our development teams across Oracle to build and leverage 

whatever shared application data they need directory storage for into OID…DO expect the number 

of disparate user silos in the Oracle stack to drop drastically starting with Oracle9i.” 

 

They also mentioned their Directory Integration Platform (DIP), pieces of which are starting to appear now 

in 9iAS R2.  The DIP will allow companies to leverage prior investments in LDAP and non-LDAP 

directories like Oracle HR, ERP systems, or in our case, the iPlanet Directory Server.  In summary, Oracle 

is totally committed to the LDAP standard and directory technology.  OID and the LDAP protocol will 

become almost as essential to your skill set as SQL.  It will become very hard for you to ignore LDAP as an 

Oracle professional. 

 

What Does An LDAP Server Do? 

 
A directory service is the main switchboard of a network operating system.  It manages the 

identities and brokers relationships between distributed resources so they can work together.  

Further, it is a place to store information about corporate and organizational assets, such as 

applications, files, printers, and users.  It provides a consistent method for naming, describing, 

locating, accessing, managing, and securing information about the resources.  It simplifies 

administration, strengthens security and enables interoperability. – Microsoft AD Overview 

 

Well-said.  However, Microsoft‟s view is NOS-centric.  A directory service can also be the main 

switchboard for B2B systems and enterprise application integration, providing the same administration, 

security and interoperability benefits to these widening, complex networks. 

 

Some of the first applications you may see, or help develop, are those that a directory server “does best.”  

These would be Single-Sign On frameworks and HR-oriented applications.  After using your directory 

server for data on humans, you soon realize that it can store other things, like information on offices, 

districts, assets of all sorts, rooms, conference bridges, etc. 

 

Then things start to sweeten: network-aware devices, like routers, firewalls, and other „net gear start using 

the directory to store configuration info, addresses and mappings which make them more dynamic and 

manageable from one interface.  Then the application developers get involved and realize there‟s no need 

for .ini or desktop registry entries anymore.  Their applications can now gain location transparency by 

dipping into the directory for runtime configuration, as well as saved user profiles and personal preferences. 

 

At this point, your company is thoroughly hooked on having a simple, high-speed, robust directory server 

at the heart of your IT world, because it has simplified life so much for you.  It is at this point that you need 

to be cautious.  The LDAP technology is your hammer and everything looks like a nail.  For this reason, 

you should be aware of when NOT to use LDAP. 

 

How Does An LDAP Server Differ From Oracle? 
In Part II of this series, I‟ll be delving into Oracle‟s LDAP directory.  But now is a good time to define an 

LDAP directory server in general (a DS), in light of our focus on Oracle (an RDBMS).  The goal is to 

understand when it‟s right to use a directory server and when you should stick to Oracle. 

 



4 

First, to clear a common confusion: LDAP is not the same as the directory server, but it is shorter and more  

fun to say.  So you will often hear, “Let‟s store that in LDAP.”  LDAP is a protocol, a simple string-

oriented means of reading or writing data to a directory server.  You can‟t store data away in a protocol.  

But in everyday parlance, “LDAP” is used interchangeably with “directory server.” 

 

A DS is a hierarchical database, not relational (although some DS‟s are able to maintain data integrity).  

This means several things, one of which is you can‟t use SQL against it.  LDAP and LDAP filters are the 

“query language” for DS‟s.  It will be a new, but short, learning curve. 

 

A DS is optimized for fast, frequent reads, but very few writes and updates.  RDBMS‟s are great at I/Os of 

all sorts, but they‟ll probably never reach the read speeds of DS‟s. 

 

A DS functions as a repository for fairly static, heavily-read, shared information.  You should never put 

transactional data in a DS.  That‟s reserved for an RDBMS, which is great at heavy insert, update and 

delete activity. 

 

A DS is flexible.  It is very easy to extend existing objectclasses or create new ones.  You can store 

information about anything in a DS, including binary data.  Up until recently, RDBMS‟s were incapable of 

allowing user-defined datatypes, and getting binary data into and out of an RDBMS was not at all easy. 

 

A DS is usually small, simple to install, very robust and easily optimized.  Our DS at NGT is only a few 

megabytes in size, takes very little RAM, and hasn‟t gone down once since we turned it on in November 

2000.  One cannot, with a straight face, say any of the same things about large RDBMS‟s. 

 

A DS is meant to run both inside and outside an internal network.  This allows a company‟s external 

partners and customers to participate in processes and services that use the centralized information in the 

DS.  You would never even think of putting an enterprise RDBMS outside the firewall! 

 

A DS usually comes with all sorts of built-in mechanisms to address security concerns, from third party 

authentication, to SSL or TLS encryption, to fine-grained and policy-based access control, even down to 

the individual attribute level.  If an RDBMS even has these features, it will probably be extra cost and 

difficult to configure.  Oracle does have some equivalent functionality, but I have yet to hear of a DBMS 

that can handle access control down to the individual column in a row. 

 

Since the read activity can get intensive for large enterprises using LDAP technology, many DS‟s are 

needed with a mirror of the centralized data.  So most DS‟s come with push/pull replication that is easy to 

use and configure.  In the relational database world, if this feature is offered at all, it is expensive and takes 

a guru to install and configure. 

 

Hopefully, you now understand what a directory server is good at.  If not, or you deem my writing to be 

pure tripe, check out http://www.ldapzone.com/why_ldap.html.  It‟s a good start when you need to form a 

business case around migrating functionality to an LDAP server. 

 

Note: Since Oracle‟s LDAP directory, OID, stores its data in an RDBMS, many of the points above are 

questionable or foggy.  Some LDAP purists are unhappy about this mainly for performance and 

replication/scalability reasons.  For a decent paper on why you wouldn‟t use an RDBMS to do a directory 

server‟s job, see http://www.openldap.org/faq/data/cache/378.html. 

How Do I Start Learning LDAP? 
When learning a foreign language, like Spanish, you find yourself translating everything you‟re reading 

and hearing in your head.  It‟s frustrating and time-consuming, but it gets the job done.  Occasionally you 

come across a familiar word, like computadora and communicación.  Others throw you for a loop, like 

embarazada, which means pregnant, not embarrassed.  So you need to exercise care in your assumptions.  

However, if you immerse yourself in the language, you eventually find you think and dream with it. 

 

http://www.ldapzone.com/why_ldap.html
http://www.openldap.org/faq/data/cache/378.html


5 

Learning to think in LDAP is similar.  I can‟t bring you to the second stage of learning the LDAP language, 

but it‟s easier if you have a “map” that translates LDAP terminology into things you‟re already familiar 

with, like relational design concepts or OO programming.  Table 2 at the end of this section, and the 

following discussion attempts to give you that map: 

 

First, a directory is a hierarchical structure, much like the listing of your hard drive or a Unix file system.  

A directory is composed entirely of entries.  A collection of entries, and the hierarchy they fall into, is 

called the Directory Information Tree (DIT).  See Listing 1 for a simple DIT.  Even the items that look like 

folders, such as groups and people, are also just another type of entry. 

 

The entry, like the object in OO systems, is the key element of LDAP technology.  An entry contains data 

about an object (like a department, person, or router).  This data is found in the entry‟s attributes (like my 

direct line, fax number, and title).  See Listing 2 for the sample IT and Bill Coulam entries that are in LDIF 

format (used for exporting and importing entries and schemas into an LDAP server). 

 

Attributes have a type and one or more values.  The “ou” in my personal entry is an attribute type.  The 

string following the colon is the value.  As you can see, I have several attributes that are repeated.  Each 

attribute type has a syntax that may specify type-checking (e.g., does this attribute store a DN, a string, or 

binary values?) and behavior during directory operations (e.g., does the compare operation use case-

sensitivity against this attribute or not?). 

 

Each entry is uniquely named in relation to the other entries at its level.  This is its Relative Distinguished 

Name (RDN).  My RDN is uid=bill.coulam@ngt.com.  It is unique among all the employees at NGT whose 

entries are at my level under ou=people.  Each entry also has a globally unique name, called a 

Distinguished Name (DN).  Moving up the hierarchy from bottom to top, the DN is composed of the RDN 

at each level.  My DN is uid=bill.coulam@ngt.com,ou=people,dc=ngt,dc=com.  Like DNS addresses, the 

DN should guarantee uniqueness among all LDAP servers.  For this reason, most DITs today have a base 

DN that mimics their DNS domain, e.g., our domain is ngt.com; therefore, our base DN is dc=ngt,dc=com.  

 

An LDAP objectclass, much like an OO class, is a template that specifies the data members that fully 

describe an entry.  Part of the objectclass‟s job is to enforce which attributes are required and which are 

allowed (or optional) in an entry.  If designed well, this template can be used by other objects.  Looking at 

my entry above, you can see that it is based on a combination of five templates, or objectclasses.  This is 

roughly equivalent to multiple inheritance in C++, or using multiple interfaces in Java (except that no 

methods are ever involved).  Most standard directory schemas stop at inetOrgPerson.  However, we had 

some special attributes that we needed to record.  So we added a new objectclass, ngtPerson, to our LDAP 

schema, and added it to all our “people” entries.  This sort of modification is very easy to do, which is 

another reason why directory servers are so flexible. 

 

An LDAP schema is a collection of objectclasses, attribute definitions and security constraints that describe 

the parameters of your directory server, who has access to what, what attributes certain entries must have, 

where certain entries must be placed, etc.  If you were to reverse engineer all the DDL for a given Oracle 

database, you‟d have a rough analog to the LDAP schema. 

 

When you need to find something in a directory, you tell the server where you want to start searching in the 

hierarchy with a scope identifier (whole tree, from this branch down, or just this entry), and what criteria 

you want to use to limit the search, which is known as the search filter. 

 

LDAP filters require their own RFC (2254).  We‟ll simplify a little.  You may search for any entry or set of 

entries.  You may search both by attribute types or their values.  You have the usual =, >= and <= 

operators, but you‟re also given the =* operator for partial string, or wildcard comparisons, and the ~= 

operator for comparing values that are similar (equivalent to the Oracle SOUNDEX function).  You also 

have Boolean operators available, the usual | for OR, & for AND and ! for NOT.  However, LDAP uses a 

non-intuitive way of constructing Boolean phrases.  In this case, expressions are enclosed in parentheses, 

with the Boolean operators preceding the expressions, which are read from left to right, innermost to 

outermost.  See Table 1 for examples. 

mailto:uid=bill.coulam@ngt.com
mailto:uid=bill.coulam@ngt.com,ou=people,dc=ngt,dc=com


6 

 

Table 1 

Filter Paraphrased Query Expression 

(!(ou=Executives)) everyone that isn‟t an executive 

(&(ou=IT)(|(title=*developer*)(title=*analyst*)) everyone in IT that is also a developer or analyst 

(|(sn~=christiansen)(sn~=jensen)) everyone whose surname sounds like Christiansen 

or Jensen. Would return Christensen, Jenson, etc. 

(&(objectclass=ngtOffice)(c=US)) Contact info on every office in the USA 

 

Table 2 

LDAP Concept Close Oracle or OO Equivalent 

Directory Server (DS) Database Server (DB) 

LDAP protocol SQL*Net/Net8/Oracle Net or RMI/IIOP 

LDAP API in C, Java or Perl SQL DML or JDBC statements 

DIT Table list and their relationships 

Organizational entry Table Name 

Object entry Row with nested table columns 

Schema DDL for tables and ADTs + portions of the data dictionary 

Objectclass Table structure (poor comparison) or OO class (w/o methods) 

Attribute type Column Name (nested table column being the best comparison) 

Attribute value Column value 

Attribute syntax Column datatype and constraints 

base DN DNS domain 

DN <DNS domain>.<Oracle SID>.<Schema>.<Table>.<ROWID/PK> 

RDN UK or UROWID 

Filter WHERE clause 

Scope None 

LDAP URL None 

Abandon operation Killing SQL client 

Search and Compare ops Select  

Add, Modify, Delete ops Insert, Update, Delete 

Bind, Unbind ops Log into/out of DB with account and password 

 

Do Try This At Home 
Now let‟s put some of this into practice.  If you have IE or Netscape, and either a real directory server, or 

Microsoft Exchange/Windows 2000 AD in place, you can try some LDAP searches right at work.  If 

you‟ve got serious time to kill, you could download, install and populate the openLDAP server, or use 

Novell‟s public test server.  The examples below use “host” in place of whatever your directory server‟s 

hostname or IP address is.  You‟ll have to get the “baseDN” from your directory admin.  For some reason, 

trying these against Exchange, I had no need for the baseDN, but against iPlanet, it was required. 

 

You may execute LDAP searches in your browser using LDAP URL syntax.  The syntax is as follows: 
ldap[s]://<host>[:<port>]/<baseDN>?<attributes>?<scope>?<filter> 

[s] operates over SSL 

baseDN is where in the DIT you want the search to start; the default is the root 

attributes is a comma-separated list of attribute types; if left out, the default brings back all attributes 

scope is either base|one|sub; the default is base, which isn‟t too useful, so most URL‟s use “sub” 

 

The simplest LDAP URL is to search for yourself by last name: 
ldap://<host>/<baseDN>??sub?(sn=<lastname>) 

 

Return the name and members of every department in the company (assuming the standard schema): 
ldap://host/ou=groups,<baseDN>?cn,uniquemember?one?(objectclass=groupOfUniqueNames) 



7 

 

Return the enterprise and application group DNs you belong to: 
ldap://host/<baseDN>?dn?sub?(&(objectclass=groupOfUniqueNames)(uniquemember=<yourDN>)) 

 

Case Study 
Before we dive into the code, a little more background is in order.  We were doing a project for a large 

telco back in 1997.  After considering numerous alternatives, we chose the Oracle Web Server and PL/SQL 

web toolkit to serve up the application.  The client had very specific security requirements that the built-in 

security mechanisms of OWS 3 could not meet.  So I designed a PL/SQL-based web application 

framework, with services for users, profiles, dynamic menuing, sessions, UI abstraction, form validation, 

cookies, etc.  A primary feature was fine-grained A&A services where users, groups, objects and their 

associations were rows in tables, as opposed to clumsy Oracle accounts.  My next employer was another 

Oracle-centric shop.  I selected OAS 4 again and rewrote the framework.  It was very useful having 

“lightweight” users (a feature that finally showed up in WebDB/Portal 3.0). 

 

I didn‟t realize it at the time, but I had built another isolated silo.  That would have been fine if all our 

applications had used the same framework, but our needs quickly changed.  Teams started doing their own 

thing, and uncontrolled purchasing brought third-party systems and databases inside our walls.  Without the 

power to enforce adherence to the enterprise architecture, the continuity fell apart.  In two short years we 

had eight different silos of A&A data.  The future looked messy.  If we kept producing silos at that rate, our 

little IT department would soon be crushed under the weight of supporting our own systems. 

 

Our Joo Janta Peril-Sensitive sunglasses went totally black (they‟re a Douglas Adams thing ;-).  Sensing the 

impending doom, we bought SilverStream (mainly for its fast, visual servlet designer and built-in LDAP 

support) in order to rewrite our web applications, all going to a single directory server for A&A 

functionality.  It‟s one of the best moves we ever made.  It‟s a beautiful thing when you can give your users 

a single login for all the systems your shop produces.  Well, all except the OAS-based applications.  They‟d 

been running almost non-stop since June 1999 and no one saw the need to rewrite them.  I migrated the 

OAS-based systems to 9iAS last July.  It went smoothly, but the issue of a separate login remained; that is, 

until the release of 8.1.7, which came with the DBMS_LDAP package.  That explains how I arrived at this 

case study for RMOUG.  I‟ll briefly cover the few A&A functions that I modified, and how dbms_ldap 

operations flow.  Although dbms_ldap covers all the LDAP operations (including entry modification and 

deletion), the code conversions only cover binding, searching and comparing. 

 

DBMS_LDAP 
With dbms_ldap, it was now possible to get A&A data from our iPlanet directory server, the same source 

all our other applications were using.  All I had to do was change the implementation of my A&A 

procedures, bypassing the local tables I‟d been using.  If you are storing user or group names in any Oracle 

table, hard-coding them, or sending e-mail to users or groups from PL/SQL, it is likely that you too could 

benefit from using dbms_ldap, assuming you now have, or will soon have, an LDAP directory in place. 

 

You‟ll encounter a few enigmas in dbms_ldap, but reading RFC 2251 (if nothing else, to cure your 

insomnia) will clear up most of them for you.  Please glance at the dbms_ldap API documentation now.  If 

it‟s not loaded in the SYS schema on your 8.1.7 or 9i DB, with a public synonym, have your DBA run 

<ORACLE_HOME>/rdbms/admin/catldap.sql as SYS.  Then open the dbms_ldap spec using TOAD or 

similar tool.  Alternatively, you can read about it at http://download-

west.oracle.com/otndoc/oracle9i/901_doc/network.901/a90152/plsql_pk.htm#1017684.  Notice the 

provided constants, exceptions, and data types.  Read a few of the comments for the init, bind and search 

functions.  Then return here. 

 

Our custom 9iAS framework also included presentation and business logic that allowed users to manage 

their own profile and password, and superusers to create and manage other accounts.  But they all go away 

with the migration to LDAP, since we have a separate JNDI web application for that functionality. 

http://download-west.oracle.com/otndoc/oracle9i/901_doc/network.901/a90152/toc.htm
http://download-west.oracle.com/otndoc/oracle9i/901_doc/network.901/a90152/toc.htm


8 

 

That left three routines that needed to use dbms_ldap: one that authenticated a user‟s login attempt, one that 

determined if the user belonged to a named group, and one that got a list of an application‟s user groups for 

drop-down display. There was a fourth, but it should be left for another article. 

 

Note: All three routines belong to my “ia_aa” package.  So if the code refers to a seemingly undeclared 

constant or PL/SQL routine, it‟s because the item is found elsewhere in the ia_aa package spec/ body, or in 

another package.  The “msg” calls are to a custom package that replaces dbms_output, handles 

logging/notification, manages error messages, and controls debugging statements.  Also, our naming 

standards follow, for better or worse, a pseudo-Hungarian notation.  Variables that start with „l‟ or „g‟, are 

local or global. Functions begin with „f‟.  Types start with „t‟, etc.  The letter(s) following the first identifier 

indicate the datatype. 

 

fb_authenticates 
The original function is shown in Listing 4 (old).  As you can see, given the values from the login page, it 

attempts to find a match in the user table.  Although 8i has a cryptography toolkit, the encrypt/decrypt 

functions you see work with older versions of Oracle.  I got the original code for them off the usenet.  Feel 

free to email if you‟d like a copy. 

 

Listing 4 (new) simply removes the TYPE dependency on the tables and replaces the SELECT statement 

with an LDAP bind attempt.  If the bind is successful, then the user‟s authentication credentials were valid.  

The function is longer now thanks to the overhead of creating and dropping a “session” with the LDAP 

server. 

 

Since init, bind and unbind must be called for every LDAP operation, I‟d extract them into separate, 

modular functions in the A&A package, thus hiding the detail and error checking, and eliminating 

redundancy (see Listing 6 new).  But I wanted to clearly show the steps of using dbms_ldap, so I chose to 

include them inline to prevent the reader from having to mentally jump around. 

 

LDAPHOST and LDAPPORT are constants set in the specification of my A&A package.  You would 

replace these with the name or address of your directory server, and port 389 (636 if doing SSL LDAP). 

 

Everything about this conversion works well in practice.  However, I chose to give the new routine a little 

stress test.  The overhead of stepping out of Oracle and performing packet operations over the network to 

the directory server meant that we would probably see a performance hit.  And the metrics bear that out.  It 

took about two seconds to perform 1,000 authentications the old way, and about six seconds to do 1,000 

with dbms_ldap.  But since our user base is less than 200, with maybe five concurrent, this was not a 

concern. 

fb_belongs_to_grp 
The original code is Listing 5 (old).  My apologies for the triple-nested functions in the first statement, but I 

find it an elegant way to code that seems to come naturally when using a modularized framework.  The 

“NP” in the session cookie name stands for Non Persistent (it disappears when the browser closes). 

 

Listing 5 (new) makes use of the LDAP compare operation.  Give it the entry‟s DN, the attribute to check, 

and what value the attribute should have, and it returns true or false.  Although I could have used a search 

and checked the resulting entries for a filled or empty result set, compare is custom-built for a query like 

this, i.e., Does this user belong to that group?  How I wish Oracle had an existence operation so I could 

bypass SELECTing COUNT(*) into a local and then checking it for equality to zero! 

 



9 

get_groups 
The old way of getting a list of groups for a given application was very straightforward (see Listing 6 old ).  

Using dbms_ldap (Listing 6 new) is obviously more involved, but well worth it. 

 

By default, dbms_ldap raises exceptions as its error handling mechanism.  If you want more control over 

exception handling, set the USE_EXCEPTION toggle to FALSE (commented out in first statement).  This 

prevents the dbms_ldap package from raising exceptions that halt your program.  Instead, you will need to 

check the return codes from all operations and branch your logic from there.  You may want to use the 

exceptions and err2string function provided by dbms_ldap to customize your error handling. 

 

The get_groups routine is a good demonstration of the steps required to do a “select” against an LDAP 

directory.  The basic idea is you: init, bind, compose a list of attributes you‟re searching for, search, iterate 

through the entries in the result set and pull the attributes desired, and for each attribute, pull its values.  If 

you were dealing with rows in an Oracle table that had several nested table columns, your SELECT 

statement would be almost as complex, so not much is lost in the conversion here. 

 

Since get_groups just needs a list of group names, not entire DNs, I use dbms_ldap.explode dn to break 

apart the DN, and then skim off the first token, the group name.  Be aware that explode_dn puts its tokens 

into the receiving PL/SQL index-by table starting at subscript 0.  I‟d forgotten that index-by tables can have 

subscripts using negative integers and zero.  So my first version didn‟t work until I replaced the hard 

subscript (1) with (last_vals.FIRST).  I skip the step of getting the attributes and their values, since the DN 

contained the group‟s name.  See Listing 7 for the additional code needed to get attributes. 

 

The calls to first_entry and next_entry are interesting.  It‟s not possible to just call next_entry in a loop.  

You must call first_entry first.  After processing the first entry, you may now call next_entry in a loop 

where its result is used as the input for the next call.  The entry variable serves as a sort of pointer, telling 

the LDAP API where to go in the result set. 

Migrating Directory Data from Oracle to an LDAP Server 
When we first set up our directory server, we had to migrate our user/group info out of Oracle.  Gurmeet 

Singh of DCC (divcomp.com) was my LDAP mentor at the time.  He pointed out the use of UTL_FILE to 

read from our custom tables and write LDIF-formatted records for easy importation into the LDAP server.  

This worked flawlessly. 

Drawbacks 
By moving my user/group info out of the database, and into the directory where it belonged, a minor 

drawback dawned on me: there is a disconnect between the two.  Now I no longer have DB-managed data 

integrity.  If a user is modified or deleted from the DS, I currently have no way of synchronizing with the 

DB.  For example, if I delete user X from the DS, but I‟ve kept a record of every order that user X has 

placed, the rows associated with X will be “orphaned” in the DB.  So far, it hasn‟t been a concern.  The 

orphans we‟ve created in Oracle by deleting LDAP users are things like sessions, work orders and trouble 

tickets that I don‟t want a cascading delete to affect anyway since they‟re valuable history.  So I‟m putting 

off writing any synchronization subsystem for later. 

 

 

Bio 
Bill spent the last 7 years building n-tier OSS and intranet applications,  

first for large telcos as an Andersen Consulting senior, and now as the app  

architect and Oracle specialist for New Global Telecom in Golden.  Once in a  

while he leaves his cube to explore Denver's mountains  

on his bike or with his 6 year old.   

bill.coulam@ngt.com.  



10 

 

Code Listings 
Listing 1 

com 

  ngt 

    offices 

    groups 

      IT (see Listing 2) 

    people 

      Bill Coulam (see Listing 3) 

    apps 

    extranet 

      customer1 

        groups 

        people 

      partner1 

      vendor1 

 

Listing 2 

dn: ou=IT,ou=groups,dc=ngt,dc=com 

objectclass: top 

objectclass: organizationalUnit 

objectclass: groupOfUniqueNames 

uniquemember:uid=bill.coulam@ngt.com,ou=people,dc=ngt,dc=com 

uniquemember:uid=fozzy.bear@ngt.com,ou=people,dc=ngt,dc=com  

uniquemember:uid=suzi.consultant@bigbucks.net,ou=people, 

                 ou=vendor1,ou=extranet,dc=ngt,dc=com 

 

Listing 3 

dn:uid=bill.coulam@ngt.com,ou=people,dc=ngt,dc=c

om 

objectclass: top 

objectclass: person 

objectclass: organizationalPerson 

objectclass: inetOrgPerson 

objectclass: ngtPerson 

cn: Bill Coulam 

sn: Coulam 

uid: bill.coulam@ngt.com 

mail: bill.coulam@ngt.com 

title: Lead Pizza-Fetcher 

mgr: 

uid=jon.smith@ngt.com,ou=people,dc=ngt,dc=com 

ou: IT 

ou: Software Development 

telephonenumber: 303.239.1078 

facsimiletelephonenumber: 303.999.9999 

mobile: 303.555.5555 

jpegPhoto: <binary data> 

ngtprimaryoffice: 

cn=Golden,ou=offices,dc=ngt,dc=com 

ngtalternatemail: 3039999998@mobile.att.net 

ngthiredate: 

ngtreleasedate: 

ngtemployeestatus: 

<address attributes snipped> 

 

 

 
Listing 4 (old) 

FUNCTION fb_authenticates 

( 

   is_user_id  IN w_user.user_id%TYPE, 

   is_password IN w_user.password%TYPE 

)  RETURN BOOLEAN 

IS 

   ln_rowcount PLS_INTEGER := 0; 

BEGIN 

   -- Use simple count to see if user exists in 

   -- table where the given password matches 

   SELECT   COUNT (*) 

   INTO     ln_rowcount 

   FROM     w_user 

   WHERE    user_id = is_user_id 

   AND      password = fs_encrypt(is_password) 

   AND      user_status <> 'I'; 

 

   IF (ln_rowcount > 0) THEN 

      RETURN TRUE; 

   ELSE 

      RETURN FALSE; 

   END IF; 

END  fb_authenticates; 

 

Listing 4 (new) 

FUNCTION fb_authenticates 

( 

   is_user_id  IN VARCHAR2 – should be full DN 

   ,is_password IN VARCHAR2 

)  RETURN BOOLEAN 

IS 

   l_session   dbms_ldap.SESSION; 

   lb_authenticated BOOLEAN := FALSE; 

   lx_session_err EXCEPTION; 

BEGIN 

   -- must establish a valid session with LDAP host 

   -- before attempting any LDAP operations 

   l_session := dbms_ldap.init(LDAPHOST,LDAPPORT); 

        

   -- authenticate to LDAP host using DN and password 

   IF ( dbms_ldap.simple_bind_s( 

         l_session 

         ,is_dn 

         ,is_password 

      ) = dbms_ldap.SUCCESS) THEN 

      lb_authenticated := TRUE; 

   ELSE 

      lb_authenticated := FALSE; 

   END IF; 

    

   -- unbind, destroying the session handle to the 

   -- LDAP host and its services 

   IF ( dbms_ldap.unbind_s(l_session) <> dbms_ldap.SUCCESS) THEN 

      RAISE lx_session_err; 

   END IF; 

 

   RETURN lb_authenticated; 

EXCEPTION 

   WHEN lx_session_err THEN 

      RAISE_APPLICATION_ERROR (-20500, 

         'Communicating with '||LDAPHOST||' failed.'||c.LF|| 

         c.CONTACT_SYSADMIN); 

      RETURN lb_authenticated;    

   WHEN dbms_ldap.init_failed THEN 

      RAISE_APPLICATION_ERROR (-20501, 

         'Unable to establish session with '||LDAPHOST||c.LF|| 

         c.CONTACT_SYSADMIN); 

      RETURN FALSE;          

END  fb_authenticates; 

 

mailto:bill.coulam@ngt.com
mailto:bill.coulam@ngt.com


11 

Listing 5 (old) 

FUNCTION fb_belongs_to_group 

(  

   is_group_nm IN VARCHAR2 

   ,is_user_id IN VARCHAR2 DEFAULT NULL 

) RETURN BOOLEAN 

IS 

   ls_user_id  w_user.user_id%TYPE; 

   ln_rowcount PLS_INTEGER := 0; 

BEGIN 

   -- retrieve user_id from session table using 

   -- session cookie as the key for lookup 

   ls_user_id :=  

      NVL(is_user_id  

          ,ia_sess.fs_get_sess_user( 

       ia_cook.fs_get_cookie(ia_cook.NPSESSION) 

          ) 

         ); 

    

   -- determine if user is a member 

   SELECT COUNT(*) 

   INTO   ln_count 

   FROM   w_user_group 

   WHERE  user_id = ls_user_id 

   AND    group_nm = is_group_nm; 

    

   IF (ln_rowcount > 0) THEN 

      RETURN TRUE; 

   ELSE 

      RETURN FALSE; 

   END IF; 

END fb_belongs_to_group; 

 

Listing 5 (new) 

FUNCTION fb_belongs_to_group 

( 

   is_group_nm IN VARCHAR2 -- should be DN of group OU 

   ,is_user_id IN VARCHAR2 DEFAULT NULL 

) RETURN BOOLEAN 

IS 

   ls_user_id   VARCHAR2(60); 

   l_session    dbms_ldap.SESSION; 

   ln_rc        PLS_INTEGER := 0; 

   ...<other vars snipped> 

    

BEGIN 

   ...<code to get session and bind snipped> 

   ls_user_id :=  

      NVL(is_user_id 

          ,ia_sess.fs_get_sess_user( 

             ia_cook.fs_get_cookie(ia_cook.NPSESSION) 

          ) 

      ); 

              

   ln_rc := dbms_ldap.compare_s( 

         l_session  

         ,is_group_nm -- DN of group to check 

         ,'uniquemember' -- attribute to check 

         ,ls_user_id -- attribute value to check 

   ); 

    

   ...<code to unbind snipped> 

    

   IF (ln_rc = dbms_ldap.COMPARE_TRUE) THEN 

      RETURN TRUE; 

   ELSE 

      RETURN FALSE; 

   END IF; 

       

   ...<code to handle exception snipped> 

END fb_belongs_to_group; 

Listing 6(old) 

PROCEDURE get_groups 

( 

   is_app     IN    VARCHAR2 -- system owner of group list 

   ,oas_groups OUT   t.tas80 -- pl/sql table of varchar2(80) 

)IS 

BEGIN 

   FOR lr_cur IN ( 

      SELECT group_nm FROM w_group 

      WHERE  app_owner = is_app 

   ) LOOP 

      oas_groups(oas_groups.COUNT+1) := lr_cur.group_nm; 

   END LOOP; 

END get_groups; 



12 

Listing 6 (new) 

PROCEDURE get_groups 

( 

   is_dn     IN    VARCHAR2 -- should be DN of group OU 

   ,oas_groups OUT   t.tas80 -- pl/sql table of varchar2(80) 

) 

IS 

   -- heavily-used vars for most dbms_ldap functions 

   l_session    dbms_ldap.SESSION; -- handle to LDAP server 

   l_results    dbms_ldap.MESSAGE; --handle to LDAPMessage envelope 

   las_vals     dbms_ldap.STRING_COLLECTION; --for breaking apart the DN 

    

   -- vars for handling entry iteration 

   l_entry      dbms_ldap.MESSAGE; 

   ln_entry_idx PLS_INTEGER := 0; 

   las_attrs    dbms_ldap.STRING_COLLECTION; 

    

   ln_rc        PLS_INTEGER := 0; 

   lx_session_failure       EXCEPTION; 

    

BEGIN 

   --dbms_ldap.USE_EXCEPTION := FALSE; 

   -- call ia_aa func to init session and bind anonymously to dir server 

   start_ldap_sess(l_session); -- session var is IN/OUT 

    

   las_attrs(1) := 'dn'; -- list of attributes desired 

    

   -- execute our search to find all group entries under a given DN. 

   handle_rc( 

      dbms_ldap.search_s( 

         l_session -- handle to LDAP server comm session 

         ,is_dn -- starting point of search in DIT 

         ,dbms_ldap.SCOPE_SUBTREE -- how deep to search 

         ,'(objectclass=groupOfUniqueNames)' -- filter 

         ,las_attrs -- array of attributes desired in the result 

         ,0 -- 0=attributes and their values; non-zero=attributes only) 

         ,l_results 

      ), 'search'); 

 

   IF (dbms_ldap.count_entries(l_session, l_results) > 0) THEN -- iterate through any entries 

       

      -- MUST use first_entry func to get the required arg for later call to next_entry 

      l_entry := dbms_ldap.first_entry(l_session, l_results); 

       

      WHILE (l_entry IS NOT NULL) LOOP       

         ln_entry_idx := ln_entry_idx + 1;    

         -- get DN from entry, and tokenize the parts... 

         las_vals := dbms_ldap.explode_dn( 

            dbms_ldap.get_dn(l_session, l_entry) 

            ,1 -– “0” leaves attribute in token, e.g. „ou=‟, “1” skims off the attributes types 

         ); 

         -- ...to place group name from first RDN into outbound result 

         oas_groups(ln_entry_idx) := las_vals(las_vals.FIRST); 

       

         l_entry := dbms_ldap.next_entry(l_session, l_entry); 

      END LOOP; 

   ELSE 

      NULL; -- leave OUT array empty 

   END IF; -- if entries returned from search 

       

   stop_ldap_sess(l_session); -- private pkg func that unbinds 

 

END get_groups; 

 



13 

Listing 7 

If I‟d needed the attributes as well, you would have seen additional variables… 
   -- vars for handling attribute iteration 

   ls_attr_nm   VARCHAR2(80); 

   ls_attr_val  VARCHAR2(500); 

   ln_attr_idx  PLS_INTEGER := 0; 

   --handle to a BER structure used for decoding incoming messages  

   l_ber_handle dbms_ldap.BER_ELEMENT;  

 

…and another WHILE loop with calls to first_attribute, next_attribute and get_values: 
   ln_attr_idx := 0; --reset attribute counter 

   ls_attr_nm := dbms_ldap.first_attribute(l_session, l_entry, l_ber_handle); 

   WHILE (ls_attr_nm IS NOT NULL) LOOP 

      ln_attr_idx := ln_attr_idx + 1; 

       

      -- there may be more than one instance of an attribute for each entry 

      -- get all the values for the current attribute 

      las_attrs := dbms_ldap.get_values (l_session, l_entry, ls_attr_nm); 

       

      <Do stuff with the attributes you now have in las_attrs> 

       

      -- try to get another attribute 

      ls_attr_nm := dbms_ldap.next_attribute(l_session, l_entry, l_ber_handle); 

   END LOOP; 

    

   IF (ln_attr_idx = 0) THEN 

      msg.p('No attributes for this entry!'); 

   END IF; 
 



14 

Resources 
http://www.openldap.org (took over for U. of Michigan site as free LDAP Mecca) 

http://developer.{netscape|iplanet}.com/tech/directory/index.html 

http://www.slapd.net/ 

http://www.nldap.com/NLDAP/ Novell‟s public LDAP server for testing purposes. 

http://www.cygsoft.com/ - free LDAP browser, for Windows 

 

Oracle9i Directory Service Integration and Deployment Guide  

Oracle Internet Directory Administrator's Guide 

Oracle Internet Directory Application Developer's Guide – best place to start 

Oracle9i Net Services Administrator's Guide 

Oracle LDAP FAQ (Doc ID 135696.1 on Metalink) 

 

LDAP is defined by RFCs 2251-2256,2829,2830.  Here are the most relevant: 

RFC 2251 - LDAP (v3)  

RFC 2252 - LDAP (v3): Attribute Syntax Definitions  

RFC 2253 - LDAP (v3): UTF-8 String Representation of Distinguished Names  

RFC 2254 - The String Representation of LDAP Search Filters  

RFC 2255 - The LDAP URL Format  

 

LDAP Programming with Java, by Rob Weltman and Tony Dahbura 

Understanding and Deploying LDAP Directory Services, by Howes, Smith and Good 

http://www.networkmagazine.com/article/DCM20000502S0039/3 - why LDAP, by Tim Howes 

http://www.ldapman.org/articles/index.html - articles on designing/deploying a directory 

 

 

 

http://www.openldap.org/
http://www.slapd.net/
http://www.nldap.com/NLDAP/
http://www.cygsoft.com/
http://www.faqs.org/rfcs/rfc2251.html
http://www.faqs.org/rfcs/rfc2252.html
http://www.faqs.org/rfcs/rfc2253.html
http://www.faqs.org/rfcs/rfc2254.html
http://www.faqs.org/rfcs/rfc2255.html
http://www.networkmagazine.com/article/DCM20000502S0039/3
http://www.ldapman.org/articles/index.html

	Using LDAP as an Oracle Professional, Part I :
	The Snowball Effect
	How Did LDAP Get Started?
	Where Is Oracle Going With LDAP?
	What Does An LDAP Server Do?
	How Does An LDAP Server Differ From Oracle?
	How Do I Start Learning LDAP?
	Do Try This At Home
	Case Study
	DBMS_LDAP
	fb_authenticates
	fb_belongs_to_grp
	get_groups
	Migrating Directory Data from Oracle to an LDAP Server
	Drawbacks
	Bio

	Resources
	Oracle Internet Directory Application Developer's Guide – best place to start


