Tests with Dynamic Sampling

As Steve has reminded me, you can’t always trust Oracle documentation. Given the possible benefits of setting dynamic sampling to 2 or higher, it was important to “get this right” for both 9i and 10g.

The following tests start with simple, easily digestible tests, working up to making the change for actual calcs to see the results.

With no rows in the temp table

We will start with a simple SELECT * test from a temporary table. This happens to be the temp table behind the performance problem Steve worked on for PJM.

First we want to see if the Oracle docs are correct regarding default dynamic sampling levels.

According to the documentation, the default dynamic sampling Level for 9i should be 1

SQL> REM On 9i

SQL> show parameter optimizer_dynamic_sampling

NAME TYPE VALUE

------------------------------------ --------------------------------- -----

optimizer_dynamic_sampling integer 1

SQL>

SQL> REM On 10g

SQL> show parameter optimizer_dynamic_sampling

NAME TYPE VALUE

------------------------------------ --------------------------------- -----

optimizer_dynamic_sampling integer 2

Next, we want to see if the Oracle docs are correct regarding levels. At level 1 on 9i, there are four restrictions. The restrictions are tight enough, that we do not expect our simple select of the empty temp to be sampled. The restrictions are that the table must be unanalyzed, joined or part of a subquery, has no indexes AND has more blocks of data in it than the default sampling blocks (the default equals the db blocksize,16K in our case). Note: We use the FIRST_ROWS hint to “wake up” the CBO and show us what it is guessing for number of rows. Without the hint, the plan does not show Cost or Cardinality.
Since pjm_unt_parm_gt is empty, we would like Oracle to determine there are no rows (Card=1) in the table and use that to make its plan decisions. But with the tight restrictions of Level 1, it is going to forego dynamic sampling and take a wild guess. We expect it to guess 16K rows.

SQL> REM On 9i

SQL> drop index pjupg_comp1_idx;

Index dropped.

SQL> select /*+ first_rows */ * from pjm_unt_parm_gt;

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: FIRST_ROWS (Cost=17 Card=16360 Bytes=5824160)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=16360 Bytes=5824160)

So Oracle used the default cardinality, which would frequently lead to poor plans if, in fact, in production pjm_unt_parm_gt only had a handful of rows in it. We need to get 9i to the point where it will dynamically sample our temp tables.

Before proceeding, let’s verify that 10g has the same behavior. 10g has several improvements to its AUTOTRACE output, explicitly telling you if it has used dynamic sampling.

SQL> REM On 10g

SQL> drop index pjupg_comp1_idx;

Index dropped.

SQL> alter session set optimizer_dynamic_sampling = 1;

Session altered.

SQL> set autotrace traceonly explain

SQL> select /*+ first_rows */ * from pjm_unt_parm_gt;

Execution Plan

--

Plan hash value: 3770551550

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 16360 | 5687K| 40 (3)| 00:00:01 |

| 1 | TABLE ACCESS FULL| PJM_UNT_PARM_GT | 16360 | 5687K| 40 (3)| 00:00:01 |

Yep, 10g behaves the same with the Level set to 1.

Although I don’t paste the output here, the plans are the same for Level 1 on 9i and 10g if I replace the composite index that Steve created to improve PJM’s performance when accessing pjm_unt_parm_gt.

So what happens to our simple select if we set the Level 2, which is the default in 10g? I think the 10g docs says it best:

“For dynamic sampling to automatically gather the necessary statistics, this parameter should be set to a value of 2 or higher.”

Too bad they weren’t so enlightened when they built the wrong default into 9i.

SQL> REM On 9i

SQL> alter session set optimizer_dynamic_sampling=2;

Session altered.

SQL> select /*+ first_rows */ * from pjm_unt_parm_gt;

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: FIRST_ROWS (Cost=17 Card=1 Bytes=356)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=1 Bytes=356)

There we go. That’s what we want. Oracle now has enough information to make better decisions about queries where this temp table is involved. Level 2 has no restrictions and dynamically samples all unanalyzed tables involved in the query.

In yesterday’s email, I pointed out that the dynamic sampling init parm and hint are different, even though the allowable number range is the same. The following quick tests show that with the Level reset to 1 in 9i, the dynamic sampling hint forces a runtime sample, even at level 1. For the hint, numbers 1 – 10 simply control the amount of blocks sampled in the temp table.

SQL> alter session set optimizer_dynamic_sampling=1;

Session altered.

SQL> select /*+ first_rows dynamic_sampling(t 0) */ * from pjm_unt_parm_gt t;

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: FIRST_ROWS (Cost=17 Card=16360 Bytes=5824160)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=16360 Bytes=5824160)

0 turns off dynamic sampling.

SQL> select /*+ first_rows dynamic_sampling(t 1) */ * from pjm_unt_parm_gt t;

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: FIRST_ROWS (Cost=17 Card=1 Bytes=356)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=1 Bytes=356)

1 forces sampling. Level 1 in the hint is different than Level 1 for the init parm.

Since a good deal of the additional features behind Level 3 and 4 for the init parm have to do with single table predicates, for kicks I ran some tests on the empty table with one and two predicates.

SQL> SELECT /*+ first_rows */ * FROM pjm_unt_parm_gt WHERE clrg_cd IN ('DA','BOTH');

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: ALL_ROWS (Cost=17 Card=164 Bytes=58384)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=164 Bytes=58384)

SQL> SELECT /*+ first_rows */ * FROM pjm_unt_parm_gt

 2 WHERE clrg_cd IN ('DA','BOTH')

 3 AND start_dt_gmt = TO_DATE('2006Jun25','YYYYMonDD')

 4 ;

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=HINT: FIRST_ROWS (Cost=17 Card=2 Bytes=712)

 1 0 TABLE ACCESS (FULL) OF 'PJM_UNT_PARM_GT' (Cost=17 Card=2 Bytes=712)

Somehow the CBO’s Level 1 guess about the number of rows that will satisfy the predicate is more accurate, I’m not sure why. But it is still not correct (remember there are no rows in the table). With the Level set to 2 or higher, it finally dynamically samples and comes up with the correct result (not shown).

Let’s just quickly validate that the default setting on 10g dynamically samples as we’d expect.

SQL*Plus: Release 10.2.0.2.0 - Production on Thu Aug 31 15:19:55 2006

Copyright (c) 1982, 2005, Oracle. All Rights Reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - 64bit Production

With the Partitioning, OLAP and Data Mining options

SQL> conn group2@mdldev

Enter password:

Connected.

SQL> set autotrace traceonly explain

SQL> select /*+ first_rows */ * from pjm_unt_parm_gt;

Execution Plan

--

Plan hash value: 3770551550

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 356 | 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| PJM_UNT_PARM_GT | 1 | 356 | 2 (0)| 00:00:01 |

Note

 - dynamic sampling used for this statement
Sure enough, it does. It gets good information, and will help the CBO make better choices for all queries involving temp tables. It even kindly tells us that it is using dynamic sampling!

With non-trivial number of rows in the temp table

What about a temp table that isn’t empty? Sometimes our queries and calculations involve temp tables that have very few rows, sometimes there are 5,000, 10,000 or more rows in them. It can very per process, per market, per client and sometimes depending on the time of day or query parameters. Trying to set something statically for the CBO (like using the CARDINALITY hint) is a poor choice in our environment. Again, we want Oracle AT RUNTIME to be able to determine how many rows are in there, so it can make the best choice among access paths.

The following tests use a simple, unique, one-column table. It mimics what Oracle would do at Level 2 for temp tables that had about 10K rows of XP_ID in them.

SQL> REM On 10g

SQL> create global temporary table gtt(myid number) on commit preserve rows;

Table created.

SQL> insert into gtt select rownum from all_objects;

8090 rows created.

SQL> commit;

Commit complete.

SQL> set autotrace traceonly explain

SQL> select /*+ first_rows */ * from gtt;

Execution Plan

--

Plan hash value: 2874536701

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 8090 | 102K| 6 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| GTT | 8090 | 102K| 6 (0)| 00:00:01 |

--

Note

 - dynamic sampling used for this statement

That’s beautiful. It dynamically and accurately determines the cardinality in the involved, unanalyzed temp table. It has a much better chance of making good decisions now.

The Problem Query

Now we come to the truly interesting test, working with an actual nMarket process. When Steve was fixing access time in pjm_sm_calc_util.eval_da_unt_parms(), he created a new composite index on the temp table involved (pjm_unt_parm_gt). This eliminated any table access to the temp table and helped things greatly. But table NM_UNT_PARM – to which pjm_unt_parm_gt was being joined – is one of our few partitioned tables whose UK is a non-prefixed local index. According to Oracle docs, non-prefixed local indexes can hinder partition pruning and ruin performance in certain conditions. Indeed the BEFORE plan with the new index on the temp table showed full partition scanning on NM_UNT_PARM, which is evil since the query was only asking for a small subset of rows within one day within one partition of that table. So we took this opportunity to recreate NM_UNTPARM_UK with start_dt_gmt leading, making it a prefixed local index. Unfortunately, in the one or two tests we tried, it didn’t seem to help much. All the partitions were still being visited. 155K rows were being accessed several times (in misguided nested loop joins to the xref table), all to return an 867-row result set.

It was just wrong. And I’m fairly certain a great deal of our joins using temp tables and large data tables suffer from the same affliction.

Steve’s new index definitely helped, but the plan SHOULD have been accessing the temp table first in order to push a filter down into NM_UNT_PARM to access only a few thousand rows in one partition. The query SHOULD have been taking a few seconds, not a minute. I suspected it was due to poor information on the amount of rows in the temp table, and that the fix could benefit the entire nMarket system. That’s what drove this day-long investigation (it took that long mainly due to temp table weirdness Murali and I kept hitting in PJMINT).

Here is the isolated query, using bind variables just as it would from the PL/SQL package, showing the plan and statistics even when pjm_unt_parm_gt was empty.

Note: PJMINT is 9i, so I’m unable to show the nicer 10g explain plan.

SQL> SET TIMING ON

var i_ptcpt_cd VARCHAR2(6)

SQL> var lc_tmefrm_num_hrly NUMBER

SQL> var pkgc_high_dt VARCHAR2(26)

SQL> var pkgc_clrg_cd_da VARCHAR2(6)

SQL> var pkgc_clrg_cd_both VARCHAR2(6)

SQL> var i_op_parm_src VARCHAR2(6)

SQL>

SQL> BEGIN

 2 :i_ptcpt_cd := 'CPSI';

 3 :lc_tmefrm_num_hrly := 3;

 4 :pkgc_high_dt := '4000Dec31 00';

 5 :pkgc_clrg_cd_da := 'DA';

 6 :pkgc_clrg_cd_both := 'BOTH';

 7 :i_op_parm_src := 'ISO';

 8 END;

 9 /

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.01

SQL> SET AUTOTRACE TRACE EXP STAT

SQL> SELECT up.unt_parm_cd,

 2 up.xp_id,

 3 up.com_sub_type_cd,

 4 gt.start_dt_gmt,

 5 gt.end_dt_gmt,

 6 up.txt_val,

 7 up.num_val,

 8 up.dt_val

 9 FROM pjm_unt_parm_gt gt,

 10 nm_unt_parm up,

 11 nm_sttl_estim_untparm_xref src_xref

 12 WHERE up.ptcpt_cd = :i_ptcpt_cd

 13 AND up.timeframe_num = :lc_tmefrm_num_hrly

 14 AND up.xp_id = gt.xp_id

 15 AND up.start_dt_gmt = gt.start_dt_gmt

 16 AND up.end_dt_gmt = gt.end_dt_gmt

 17 AND up.inactive_dt_sys = TO_DATE(:pkgc_high_dt,'YYYYMonDD HH24')

 18 AND up.clrg_cd IN (:pkgc_clrg_cd_da

 19 ,:pkgc_clrg_cd_both)

 20 AND (up.txt_val IS NOT NULL OR up.num_val IS NOT NULL OR up.dt_val IS NOT NULL)

 21 AND up.status_cd = src_xref.status_cd

 22 AND up.source_cd = src_xref.source_cd

 23 AND src_xref.untparm_status_cd = :i_op_parm_src

 24 ;

no rows selected

Elapsed: 00:00:15.75

Execution Plan

--

 SELECT STATEMENT Optimizer=CHOOSE (Cost=230 Card=1 Bytes=114)

7 NESTED LOOPS (Cost=230 Card=1 Bytes=114)

5 NESTED LOOPS (Cost=229 Card=271 Bytes=22493)

1 INDEX (RANGE SCAN) OF 'NM_UNTPARMSTATXREF_UK' (UNIQUE) (Cost=1 Card=2 Bytes=36)

4 PARTITION RANGE (ALL)
3 TABLE ACCESS (BY LOCAL INDEX ROWID) OF 'NM_UNT_PARM' (Cost=114 Card=163 Bytes=10595)

2 INDEX (RANGE SCAN) OF 'NM_UNTPARM_COMP_LIDX' (NON-UNIQUE) (Cost=179 Card=496)

6 INDEX (RANGE SCAN) OF 'PJUPG_COMP1_IDX' (NON-UNIQUE)
Statistics

--

 0 recursive calls

 0 db block gets

 3342 consistent gets

 2568 physical reads

 0 redo size

 354 bytes sent via SQL*Net to client

 227 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

This is the exact same plan Steve was seeing in the real test trace after the addition of the temp’s new index. 16 seconds to figure out that it couldn’t actually return any rows due to the empty temp table. Lots of physical I/O just to find out at the end that there was no way it could have returned any rows anyway. As you can see from the magenta sequence in the plan above, it accesses the temp table’s new index last, AFTER it has done some grunt work slogging through all the partitions of NM_UNT_PARM, which is a very large table in the wild (PJMINT only has 450K rows). Clearly the CBO is missing information.

In the past, when the CBO made such poor choices, it was due to bind variables. When a PL/SQL package is compiled, the CBO attempts to determine what each SQL statement’s plan will be. This plan is cached (I forget where) and used when the package is called. Every PL/SQL variable used in SQL statements inside PL/SQL objects is treated as a bind variable, a placeholder whose value is unknown at compile time. For all the CBO knows the value of the bind variable will result in 1 row being accessed at runtime, or a billion. It really has no idea. Bind variables are the cat’s meow for OLTP systems, small tables, and millions of itty-bitty queries every day. But they are generally horrid for long queries on large tables. In the past, the solution was to make huge queries use dynamic SQL so that the values of the variables could be evaluated at runtime and the plan chosen at runtime, taking advantage of selectivity and cardinality data determined by table, index and column statistics. Since the query took so long to run anyway, the addition of a sub-second parse for the dynamic SQL was trivial and resulted in much better plans. With 9i, Oracle introduced bind-peeking to attempt to alleviate this problem, but it just opened up a whole new bag of bugs that is not the focus of this paper.

Understanding this old trick to get around bind value ignorance, I used literals instead of binds to see what plan would be chosen if we used dynamic SQL for this slow query.

SQL> SELECT up.unt_parm_cd,

 2 up.xp_id,

 3 up.com_sub_type_cd,

 4 gt.start_dt_gmt,

 5 gt.end_dt_gmt,

 6 up.txt_val,

 7 up.num_val,

 8 up.dt_val

 9 FROM pjm_unt_parm_gt gt,

 10 nm_unt_parm up,

 11 nm_sttl_estim_untparm_xref src_xref

 12 WHERE up.ptcpt_cd = 'CPSI'

 13 AND up.timeframe_num = 3

 14 AND up.xp_id = gt.xp_id

 15 AND up.start_dt_gmt = gt.start_dt_gmt

 16 AND up.end_dt_gmt = gt.end_dt_gmt

 17 AND up.inactive_dt_sys = TO_DATE('4000Dec31 00','YYYYMonDD HH24')

 18 AND up.clrg_cd IN ('DA'

 19 ,'BOTH')

 20 AND (up.txt_val IS NOT NULL OR up.num_val IS NOT NULL OR up.dt_val IS NOT NULL)

 21 AND up.status_cd = src_xref.status_cd

 22 AND up.source_cd = src_xref.source_cd

 23 AND src_xref.untparm_status_cd = 'ISO'

 24 ;

no rows selected

Elapsed: 00:00:13.15

Execution Plan

--

 SELECT STATEMENT Optimizer=CHOOSE (Cost=456 Card=8 Bytes=912)

6 NESTED LOOPS (Cost=456 Card=8 Bytes=912)

4 NESTED LOOPS (Cost=455 Card=42208 Bytes=3503264)

2 PARTITION RANGE (ALL)
1 TABLE ACCESS (FULL) OF 'NM_UNT_PARM' (Cost=454 Card=151948 Bytes=9876620)

3 INDEX (UNIQUE SCAN) OF 'NM_UNTPARMSTATXREF_UK' (UNIQUE)

5 INDEX (RANGE SCAN) OF 'PJUPG_COMP1_IDX' (NON-UNIQUE)

Statistics

--

 0 recursive calls

 0 db block gets

 3342 consistent gets

 2535 physical reads

 0 redo size

 354 bytes sent via SQL*Net to client

 227 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

It runs a little faster than using binds, but the plan is actually worse. (The better runtime is due to the smallish NM_UNT_PARM. In the wild, the first step of full scanning the entire NM_UNT_PARM table would take forever.) It uses about the same I/O and the cost is doubled. Now the xref table is accessed 2nd, but our key to success, the temp table with the dates and XP’s in it, is still accessed last.

Why?

Clearly dynamic SQL would not help us. The CBO is still missing information. This is good news since we really, really don’t want the effort of rewriting our largest queries to use dynamic SQL anyway.

Of all the filters in the predictate, the start_dt_gmt and xp_id are the most selective, and unfortunately, their runtime values are buried in the temp table, about which the CBO knows nothing and can only guess…and guess badly. If we could get the CBO to see the dates and XPs in our temp table first, it would be able to use partition pruning and/or proper index access on NM_UNT_PARM last.

Enter dynamic sampling.

SQL> SELECT /*+ DYNAMIC_SAMPLING(gt 1) */

 2 up.unt_parm_cd,

 3 up.xp_id,

 4 up.com_sub_type_cd,

 5 gt.start_dt_gmt,

 6 gt.end_dt_gmt,

 7 up.txt_val,

 8 up.num_val,

 9 up.dt_val

 10 FROM pjm_unt_parm_gt gt,

 11 nm_unt_parm up,

 12 nm_sttl_estim_untparm_xref src_xref

 13 WHERE up.ptcpt_cd = 'CPSI'

 14 AND up.timeframe_num = 3

 15 AND up.xp_id = gt.xp_id

 16 AND up.start_dt_gmt = gt.start_dt_gmt

 17 AND up.end_dt_gmt = gt.end_dt_gmt

 18 AND up.inactive_dt_sys = TO_DATE('4000Dec31 00','YYYYMonDD HH24')

 19 AND up.clrg_cd IN ('DA'

 20 ,'BOTH')

 21 AND (up.txt_val IS NOT NULL OR up.num_val IS NOT NULL OR up.dt_val IS NOT NULL)

 22 AND up.status_cd = src_xref.status_cd

 23 AND up.source_cd = src_xref.source_cd

 24 AND src_xref.untparm_status_cd = 'ISO'

 25 ;

no rows selected

Elapsed: 00:00:01.96

Execution Plan

--

 SELECT STATEMENT Optimizer=CHOOSE (Cost=7 Card=1 Bytes=114)

8 TABLE ACCESS (BY LOCAL INDEX ROWID) OF 'NM_UNT_PARM' (Cost=3 Card=1 Bytes=65)

7 NESTED LOOPS (Cost=7 Card=1 Bytes=114)

4 MERGE JOIN (CARTESIAN) (Cost=4 Card=1 Bytes=49)

1 INDEX (RANGE SCAN) OF 'NM_UNTPARMSTATXREF_UK' (UNIQUE) (Cost=1 Card=2 Bytes=36)

3 BUFFER (SORT) (Cost=3 Card=1 Bytes=31)

2 INDEX (FULL SCAN) OF 'PJUPG_COMP1_IDX' (NON-UNIQUE) (Cost=6 Card=1 Bytes=31)

6 PARTITION RANGE (ITERATOR)
5 INDEX (RANGE SCAN) OF 'NM_UNTPARM_COMP_LIDX' (NON-UNIQUE)

Statistics

--

 0 recursive calls

 0 db block gets

 1 consistent gets

 0 physical reads

 0 redo size

 355 bytes sent via SQL*Net to client

 227 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 0 rows processed

That is one funky plan, one which I would have never been able to force with custom hints in a million years. But given correct information about the empty temp table (Card=1), the CBO can finally choose a good path. Look at the I/O! 1 compared to 7,000. 2 seconds instead of 1! Check out the plan. The xref and temp table are finally accessed first, followed by a PARTITION RANGE (ITERATOR) step through the local composite index. Last of all we see the table access of NM_UNT_PARM. Since the filtering has now been done in the proper order, the cardinality is finally correct for this join with an empty temp table.

Setting the 9i init parm to Level 2 has the same effect and requires no alteration to code (not shown).

Using actual contents of pjm_unt_parm_gt, captured from a real test call in PJMINT, the problem query shows similar improvements:

SQL> SET AUTOTRACE TRACE EXP STAT

SQL> SELECT up.unt_parm_cd,

 2 up.xp_id,

 3 up.com_sub_type_cd,

 4 gt.start_dt_gmt,

 5 gt.end_dt_gmt,

 6 up.txt_val,

 7 up.num_val,

 8 up.dt_val

 9 FROM pjm_unt_parm_gt gt, (Has 144 rows in it now
 10 nm_unt_parm up,

 11 nm_sttl_estim_untparm_xref src_xref

 12 WHERE up.ptcpt_cd = :i_ptcpt_cd

 13 AND up.timeframe_num = :lc_tmefrm_num_hrly

 14 AND up.xp_id = gt.xp_id

 15 AND up.start_dt_gmt = gt.start_dt_gmt

 16 AND up.end_dt_gmt = gt.end_dt_gmt

 17 AND up.inactive_dt_sys = TO_DATE(:pkgc_high_dt,'YYYYMonDD HH24')

 18 AND up.clrg_cd IN (:pkgc_clrg_cd_da

 19 ,:pkgc_clrg_cd_both)

 20 AND (up.txt_val IS NOT NULL OR up.num_val IS NOT NULL OR up.dt_val IS NOT NULL)

 21 AND up.status_cd = src_xref.status_cd

 22 AND up.source_cd = src_xref.source_cd

 23 AND src_xref.untparm_status_cd = :i_op_parm_src

 24 ;

846 rows selected.

Elapsed: 00:00:16.32

Execution Plan

--

 0 ^ SELECT STATEMENT Optimizer=CHOOSE (Cost=230 Card=1 Bytes=114)

 1 0 NESTED LOOPS (Cost=230 Card=1 Bytes=114)

 2 1 NESTED LOOPS (Cost=229 Card=271 Bytes=22493)

 3 2 INDEX (RANGE SCAN) OF 'NM_UNTPARMSTATXREF_UK' (UNIQUE) (Cost=1 Card=2 Bytes=36)

 4 2 PARTITION RANGE (ALL)

 5 4 TABLE ACCESS (BY LOCAL INDEX ROWID) OF 'NM_UNT_PARM' (Cost=114 Card=163 Bytes=10595)

 6 5 INDEX (RANGE SCAN) OF 'NM_UNTPARM_COMP_LIDX' (NON-UNIQUE) (Cost=179 Card=496)

 7 1 INDEX (RANGE SCAN) OF 'PJUPG_COMP1_IDX' (NON-UNIQUE)

Statistics

--

 0 recursive calls

 0 db block gets

 3572 consistent gets

 2548 physical reads

 0 redo size

 31711 bytes sent via SQL*Net to client

 626 bytes received via SQL*Net from client

 58 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 846 rows processed

Same old awful plan. Now let’s try it with dynamic sampling at Level 2.

SQL> ALTER SESSION SET optimizer_dynamic_sampling = 2;

Session altered.

Elapsed: 00:00:00.01

SQL>

SQL> SET AUTOTRACE TRACE EXP STAT

SQL> SELECT up.unt_parm_cd,

 2 up.xp_id,

 3 up.com_sub_type_cd,

 4 gt.start_dt_gmt,

 5 gt.end_dt_gmt,

 6 up.txt_val,

 7 up.num_val,

 8 up.dt_val

 9 FROM bc_unt_parm_gt gt,

 10 nm_unt_parm up,

 11 nm_sttl_estim_untparm_xref src_xref

 12 WHERE up.ptcpt_cd = :i_ptcpt_cd

 13 AND up.timeframe_num = :lc_tmefrm_num_hrly

 14 AND up.xp_id = gt.xp_id

 15 AND up.start_dt_gmt = gt.start_dt_gmt

 16 AND up.end_dt_gmt = gt.end_dt_gmt

 17 AND up.inactive_dt_sys = TO_DATE(:pkgc_high_dt,'YYYYMonDD HH24')

 18 AND up.clrg_cd IN (:pkgc_clrg_cd_da

 19 ,:pkgc_clrg_cd_both)

 20 AND (up.txt_val IS NOT NULL OR up.num_val IS NOT NULL OR up.dt_val IS NOT NULL)

 21 AND up.status_cd = src_xref.status_cd

 22 AND up.source_cd = src_xref.source_cd

 23 AND src_xref.untparm_status_cd = :i_op_parm_src

 24 ;

846 rows selected.

Elapsed: 00:00:02.15

Execution Plan

--

 SELECT STATEMENT Optimizer=CHOOSE (Cost=64 Card=1 Bytes=114)

7 NESTED LOOPS (Cost=64 Card=1 Bytes=114)

5 NESTED LOOPS (Cost=63 Card=1 Bytes=96)

1 INDEX (FAST FULL SCAN) OF 'PJUPG_COMP1_IDX' (NON-UNIQUE) (Cost=5 Card=144 Bytes=4464)

4 PARTITION RANGE (ITERATOR)

3 TABLE ACCESS (BY LOCAL INDEX ROWID) OF 'NM_UNT_PARM' (Cost=1 Card=1 Bytes=65)

2 INDEX (RANGE SCAN) OF 'NM_UNTPARM_COMP_LIDX' (NON-UNIQUE) (Cost=1 Card=1)

6 INDEX (UNIQUE SCAN) OF 'NM_UNTPARMSTATXREF_UK' (UNIQUE)

Statistics

--

 10 recursive calls

 0 db block gets

 1846 consistent gets

 0 physical reads

 0 redo size

 21521 bytes sent via SQL*Net to client

 626 bytes received via SQL*Net from client

 58 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 846 rows processed

Wonderful. 16 seconds down to 2. That’s an 8X improvement. The plan is close to what I expected, but good enough to be remain satisfied. There is I/O now, but that’s to be expected since we finally have rows we are pulling back, plus it is still 3X better than the previous plan with dynamic sampling defaulted to Level 1.

Reality Test

So let’s put these findings into practice and observe the results of Level 2 on 9i with real code.

Murali cooked up a nice anonymous block to make the backend calls that would eventually hit the problem query above. Consistently, with 9i defaults and the new composite index on the temp table, the call would take 1.5 minutes.

SQL> SET TIMING ON

SQL>

SQL> DECLARE

 2 i_audit_rec NM_TYP_AUDIT_REC

 3 := NM_TYP_AUDIT_REC('CPSI','PJM',-10,8888,8888,NULL,NULL);

 4 i_start_dt_gmt DATE := TO_DATE('6/25/2006 4','mm/dd/yyyy hh24');

 5 i_end_dt_gmt DATE := TO_DATE('6/26/2006 4','mm/dd/yyyy hh24');

 6 i_mtr_src VARCHAR2(6) := 'ISO';

 7 i_disp_src VARCHAR2(6) := 'ISO';

 8 i_op_parm_src VARCHAR2(6) := 'ISO';

 9 i_bid_offer_src VARCHAR2(6) := 'ISO';

 10 i_sched_src VARCHAR2(6) := 'IISO';

 11 i_extrnl_sched_src VARCHAR2(6) := 'EISO';

 12 BEGIN

 13 dbms_output.put_line('Start Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 14

 15 PJM_SM_CALC.estim_driver_plugin

 16 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 17 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src);

 18 dbms_output.put_line('Finished driver plugin. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 19

 20 PJM_SM_CALC_SR_CRD.calc_sr_tier2_crd

 21 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 22 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src);

 23 dbms_output.put_line('Finished SR T2 Crd. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 24

 25 PJM_SM_CALC.estim_data_transfer

 26 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 27 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src

 28 ,'Run Sttl from Backend. Time =['||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS')||'].');

 29 dbms_output.put_line('Finished data transfer. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 30

 31 dbms_output.put_line('End Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 32

 33 COMMIT;

 34 EXCEPTION

 35 WHEN OTHERS THEN

 36 dbms_output.put_line('Error. '||SQLERRM);

 37 END;

 38 /

Start Time = 09/07/2006 15:37:16

Finished driver plugin. Time = 09/07/2006 15:37:17

Finished SR T2 Crd. Time = 09/07/2006 15:38:40

Finished data transfer. Time = 09/07/2006 15:38:40

End Time = 09/07/2006 15:38:40

PL/SQL procedure successfully completed.

Elapsed: 00:01:24.79

And again at Level 2:

SQL> ALTER SESSION SET optimizer_dynamic_sampling = 2;

Session altered.

SQL>

SQL> SET TIMING ON

SQL>

SQL> DECLARE

 2 i_audit_rec NM_TYP_AUDIT_REC

 3 := NM_TYP_AUDIT_REC('CPSI','PJM',-10,8888,8888,NULL,NULL);

 4 i_start_dt_gmt DATE := TO_DATE('6/25/2006 4','mm/dd/yyyy hh24');

 5 i_end_dt_gmt DATE := TO_DATE('6/26/2006 4','mm/dd/yyyy hh24');

 6 i_mtr_src VARCHAR2(6) := 'ISO';

 7 i_disp_src VARCHAR2(6) := 'ISO';

 8 i_op_parm_src VARCHAR2(6) := 'ISO';

 9 i_bid_offer_src VARCHAR2(6) := 'ISO';

 10 i_sched_src VARCHAR2(6) := 'IISO';

 11 i_extrnl_sched_src VARCHAR2(6) := 'EISO';

 12 BEGIN

 13 dbms_output.put_line('Start Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 14

 15 PJM_SM_CALC.estim_driver_plugin

 16 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 17 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src);

 18 dbms_output.put_line('Finished driver plugin. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 19

 20 PJM_SM_CALC_SR_CRD.calc_sr_tier2_crd

 21 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 22 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src);

 23 dbms_output.put_line('Finished SR T2 Crd. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 24

 25 PJM_SM_CALC.estim_data_transfer

 26 (i_audit_rec,i_start_dt_gmt,i_end_dt_gmt

 27 ,i_mtr_src,i_disp_src,i_op_parm_src,i_bid_offer_src,i_sched_src,i_extrnl_sched_src

 28 ,'Run Sttl from Backend. Time =['||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS')||'].');

 29 dbms_output.put_line('Finished data transfer. Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 30

 31 dbms_output.put_line('End Time = '||TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI:SS'));

 32

 33 COMMIT;

 34 EXCEPTION

 35 WHEN OTHERS THEN

 36 dbms_output.put_line('Error. '||SQLERRM);

 37 END;

 38 /

Start Time = 09/07/2006 15:34:45

Finished driver plugin. Time = 09/07/2006 15:34:46

Finished SR T2 Crd. Time = 09/07/2006 15:34:54

Finished data transfer. Time = 09/07/2006 15:34:54

End Time = 09/07/2006 15:34:54

PL/SQL procedure successfully completed.

Elapsed: 00:00:08.87

9 seconds vs. 85 seconds, almost a 10-fold improvement.

Need I say more?

