Proposal to go to straight, simple, fast sequence calls

Current Approaches:

nMarket:

1. nMarket creates normal sequences, some cached 1000, most cached 20.

2. nMarket used to use just a few shared sequences for all surrogate keys. Now, it is a little more liberal in its use of sequences, but is still in between one per table and a few per system.

3. Rather than access the sequences directly as intended, nMarket goes through a packaged function that issues an extra select, a variable assignment, a native dynamic SQL parse and execute, and another variable assignment every time another sequence value is needed.
4. In many cases, nMarket developers call the get_sequence() function outside of the actual INSERT statement, assigning the result to a variable, then using the variable within the INSERT. In other cases, single statement DML is being used, with the function called for every row in the result set.

PositionManager:

1. There is one sequence per table.

2. Each sequence is named after the table.

3. Each table has a trigger that transparently populates the surrogate key from the sequence using a direct call to the sequence. The trigger is fired during inserts.

This approach is straightforward, automateable and self-maintaining. Triggered surrogate key generation is as slow as the fastest function-based approach. So it is faster than the nMarket approach, but not as fast as it could be. PositionManager’s take on sequences is sufficient given its user load and data throughput requirements.

Gas:

1. For the most part, there is one sequence for each surrogate key in gas, named after that table it feeds.

2. Although the nm_table_sequences table exists, it is used primarily in inherited Core code.

3. The remainder of the GAS sequences are called directly.

Problems with the Current Approach:

nMarket approach is very slow and can’t scale

· Calling sequences in a row-by-row fashion instead of in single statement DML is slow. Calling sequences through a function is even slower.

· Combine that winning team of slowness with an embedded SELECT and parse-every-time dynamic SQL, and you have the champion of sluggishness.

· If nMarket had a high user load, the latching/locking inherent with shared singleton sequence generators would become obvious.

Although it doesn’t seem like nMarket has a speed issue with sequences, it is only because we don’t process large volumes of records. If we ever do, say in Allocations, or something similar that creates billions of rows per year, we will wish we had established a faster method of sequence access before that day hit us.

nMarket approach hurts maintenance, conversions, testing and more

· Structure exacerbates the problem by hiding the sequence names in a table. Human error with this table could (and did) result in incorrect sequences being used, overlapping numbers and constraint violations.

· It exacerbates the problem even further by allowing some tables to share a common sequence.

The original author of this scheme probably wanted to simplify things and reduce the number of objects to manage. However, shared sequences only work for static tables that do not change. For highly dynamic or high volume tables, it leads to numbers that are artificially large, eating up precious bytes in huge tables where space is an issue, and it can (and did) cause issues when migrating data, setting up test data, and other scenarios where tables are loaded, converted and child data is otherwise worked to coincide with parent data. Jim, Neil and I all have stories where shared sequences caused big issues.

Proposed Changes to Structure Conventions

I’d like to propose that we use sequences as Oracle intended: directly and from within bulk DML statements.

· We would establish the convention of one sequence for each dynamic table with a surrogate key, named after the table. No sequence for static tables that change very little.

· For INSERT statements against static tables, the surrogate key would be managed by a new packaged function called by the INSERT statement. The packaged function selects the MAX number from the table and adds 1.

· For INSERT statements against the dynamic tables, sequences are called directly (INSERT INTO …. SELECT my_table_seq.NEXTVAL…). Code that requires the sequence numbers for later processing would use the single or bulk RETURNING clause within the INSERT.

The way PositionManager handles sequences would be left alone until the slower triggers caused problems (probably never).

Benefits

Bulk inserts to dynamic tables will be 3 to 19X faster (performance results below).

Training the developers on calling the sequences directly, bulk inserts and bulk RETURNING, will only benefit Structure as they apply more bulk processing liberally in new and refactored code.

Inserts to static tables will be slightly slower, but not discernible since most inserts to static tables are for a single row. There will be fewer sequences to manage since we won’t create a sequence for every table. The calls to the function that adds 1 to the MAX could be transparently done in triggers for each static table if so desired. Besides, most of our static tables have strings for primary keys, so this new convention won’t affect us much to begin with. This new convention anticipates that we will someday have the time and authorization to convert nMarket static tables from the disaster-waiting-to-happen 6-character code scheme to a proper surrogate key scheme.

Unique key collisions and conversion problems will cease since the static tables and dynamic tables will now be autonomous, not sharing any sequence.

The use of incorrect sequences will also cease since the sequences that do exist are named after their tables, making it very obvious when one is calling the wrong one in code, as opposed to hidden behind a generic function.

Speed

	50,000 iterations to each of two tables, two sequences = 100,000 inserts
	Method
	9i (mdlrel)
	10g (mdldev)
	Cache 20
	Percent Faster
than Current
	

	Using table and DBMS_SQL func
(ROW-BY-ROW)...
	fdyn rbr
	01:24.3
	01:23.6
	01:00.3
	-38.87%
	

	Using table and NDS func
(ROW-BY-ROW)...
	fNDS rbr
	01:03.5
	01:00.2
	01:25.6
	0.00%
	

	Using if-then-else func
(ROW-BY-ROW)...
	fite rbr
	00:35.8
	00:32.0
	00:36.1
	46.84%
	

	Using trigger
(ROW-BY-ROW)...
	trg rbr
	00:34.9
	00:36.3
	00:40.2
	39.70%
	

	Using simple sequence call
(ROW-BY-ROW)...
	seq rbr
	00:16.8
	00:19.8
	00:23.7
	67.11%
	3X
faster

	Using table and DBMS_SQL func
(SINGLE INSERT)...
	fdyn ins
	01:05.8
	01:07.2
	00:46.5
	-57.38%
	

	Using table and NDS func
(SINGLE INSERT)...
	fNDS ins
	00:51.0
	00:42.7
	01:11.3
	0.00%
	

	Using if-then-else func
(SINGLE INSERT)...
	fite ins
	00:22.8
	00:18.0
	00:22.3
	57.85%
	

	Using trigger
(SINGLE INSERT)...
	trg ins
	00:24.2
	00:24.2
	00:28.9
	59.80%
	

	Using simple sequence call
(SINGLE INSERT)...
	seq ins
	00:02.8
	00:02.3
	00:06.6
	94.61%
	19X
faster

[image: image1.wmf]00:00.0

00:08.6

00:17.3

00:25.9

00:34.6

00:43.2

00:51.8

01:00.5

01:09.1

01:17.8

01:26.4

Min:Sec

fdyn rbr

fNDS rbr

fite rbr

trg rbr

seq rbr

Method

Row-by-Row Sequence Calls

9i (mdlrel)

10g (mdldev)

[image: image2.wmf]00:00.0

00:08.6

00:17.3

00:25.9

00:34.6

00:43.2

00:51.8

01:00.5

01:09.1

Min:Sec

fdyn ins

fNDS ins

fite ins

trg ins

seq ins

Method

Straight SQL Sequence Calls

9i (mdlrel)

10g (mdldev)

fNDS = nMarket current approach

trg = PositionManager current approach

seq = Gas (and proposed) approach

_1201012140.xls
Chart3

		fdyn rbr		fdyn rbr

		fNDS rbr		fNDS rbr

		fite rbr		fite rbr

		trg rbr		trg rbr

		seq rbr		seq rbr

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Row-by-Row Sequence Calls

0.0009756944

0.0009675926

0.0007349537

0.0006967593

0.0004143519

0.0003703704

0.0004039352

0.0004201389

0.0001944444

0.0002291667

Sheet1

		50,000 iterations to each of two tables, two sequences = 100,000 inserts		Method		9i (mdlrel)		10g (mdldev)		Cache 20		Percent Faster
than Current

		Using table and DBMS_SQL func
(ROW-BY-ROW)...		fdyn rbr		01:24.3		01:23.6		01:00.3		-38.87%

		Using table and NDS func
(ROW-BY-ROW)...		fNDS rbr		01:03.5		01:00.2		01:25.6		0.00%

		Using if-then-else func
(ROW-BY-ROW)...		fite rbr		00:35.8		00:32.0		00:36.1		46.84%

		Using trigger
(ROW-BY-ROW)...		trg rbr		00:34.9		00:36.3		00:40.2		39.70%

		Using simple sequence call
(ROW-BY-ROW)...		seq rbr		00:16.8		00:19.8		00:23.7		67.11%		3X
faster

				Method		9i (mdlrel)		10g (mdldev)

		Using table and DBMS_SQL func
(SINGLE INSERT)...		fdyn ins		01:05.8		01:07.2		00:46.5		-57.38%

		Using table and NDS func
(SINGLE INSERT)...		fNDS ins		00:51.0		00:42.7		01:11.3		0.00%

		Using if-then-else func
(SINGLE INSERT)...		fite ins		00:22.8		00:18.0		00:22.3		57.85%

		Using trigger
(SINGLE INSERT)...		trg ins		00:24.2		00:24.2		00:28.9		59.80%

		Using simple sequence call
(SINGLE INSERT)...		seq ins		00:02.8		00:02.3		00:06.6		94.61%		19X
faster

Sheet1

		

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Row-by-Row Sequence Calls

Sheet2

		

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Straight SQL Sequence Calls

Sheet3

		

		

_1201012148.xls
Chart4

		fdyn ins		fdyn ins

		fNDS ins		fNDS ins

		fite ins		fite ins

		trg ins		trg ins

		seq ins		seq ins

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Straight SQL Sequence Calls

0.0007615741

0.0007777778

0.0005902778

0.000494213

0.0002638889

0.0002083333

0.0002800926

0.0002800926

0.0000324074

0.0000266204

Sheet1

		50,000 iterations to each of two tables, two sequences = 100,000 inserts		Method		9i (mdlrel)		10g (mdldev)		Cache 20		Percent Faster
than Current

		Using table and DBMS_SQL func
(ROW-BY-ROW)...		fdyn rbr		01:24.3		01:23.6		01:00.3		-38.87%

		Using table and NDS func
(ROW-BY-ROW)...		fNDS rbr		01:03.5		01:00.2		01:25.6		0.00%

		Using if-then-else func
(ROW-BY-ROW)...		fite rbr		00:35.8		00:32.0		00:36.1		46.84%

		Using trigger
(ROW-BY-ROW)...		trg rbr		00:34.9		00:36.3		00:40.2		39.70%

		Using simple sequence call
(ROW-BY-ROW)...		seq rbr		00:16.8		00:19.8		00:23.7		67.11%		3X
faster

				Method		9i (mdlrel)		10g (mdldev)

		Using table and DBMS_SQL func
(SINGLE INSERT)...		fdyn ins		01:05.8		01:07.2		00:46.5		-57.38%

		Using table and NDS func
(SINGLE INSERT)...		fNDS ins		00:51.0		00:42.7		01:11.3		0.00%

		Using if-then-else func
(SINGLE INSERT)...		fite ins		00:22.8		00:18.0		00:22.3		57.85%

		Using trigger
(SINGLE INSERT)...		trg ins		00:24.2		00:24.2		00:28.9		59.80%

		Using simple sequence call
(SINGLE INSERT)...		seq ins		00:02.8		00:02.3		00:06.6		94.61%		19X
faster

Sheet1

		

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Row-by-Row Sequence Calls

Sheet2

		

9i (mdlrel)

10g (mdldev)

Method

Min:Sec

Straight SQL Sequence Calls

Sheet3

		

		

