Background

In order to do partition reporting and sometimes to recreate DDL for certain scripts, I needed the ability to read the columns that belonged to a partition key or integrity constraint, and reconstruct a comma-separated list from the single or multi-column set.

In order to do this, I create a simple string concatenation function:

SET TERMOUT OFF
DROP FUNCTION cols_in_index
/
SET TERMOUT ON

CREATE OR REPLACE FUNCTION cols_in_index(i_index IN VARCHAR2) RETURN VARCHAR2 IS
 l_cols VARCHAR2(32767);
BEGIN
 FOR lrc IN (
 SELECT t.column_name
 FROM user_ind_columns t
 WHERE index_name = i_index
 ORDER BY t.column_position) LOOP
 l_cols := l_cols ||','||LOWER(lrc.column_name);
 END LOOP;

 RETURN LTRIM(l_cols,',');
END cols_in_index;
/

Since it is a standalone function, I am able to call this function from any SQL without worrying about restrictions, DETERMINISTIC, etc..

SELECT pt.table_name
 ,pt.index_name
 ,pt.partitioning_type || '(' || LOWER(pk.column_name) || ')' ||
 DECODE(pt.subpartitioning_type
 ,NULL
 ,NULL
 ,' + ' || pt.subpartitioning_type || '(' ||
 LOWER(spk.column_name) || ') ') || locality || ' ' || alignment TYPE
 ,rp.subparts
 ,cols_in_index(pt.index_name) cols
 FROM user_part_indexes pt
 ,user_part_key_columns pk
 ,user_subpart_key_columns spk
 ,(SELECT index_name
 ,AVG(subpartition_count) subparts
 FROM user_ind_partitions
 GROUP BY index_name) rp
 WHERE pt.index_name = pk.name
 AND pt.index_name = spk.name(+)
 AND pt.index_name = rp.index_name
 ORDER BY table_name
 ,index_name;

OR

SELECT c.table_name,
 c.index_name,
 cols_in_index(c.index_name) cols
 FROM (SELECT DISTINCT table_name,
 index_name
 FROM my_ind_columns) c;

But using a function that queries like this is a sloppy solution for the following reasons.

Problem

1) The function is too specific. It only works for columns in an index. It couldn’t be re-used to, say, concatenate all the columns found in a table, or the methods in a type. I would like it more generic, able to concatenate a set of strings that I pass to it.

2) Performance. I have to use a user-defined function. It is called once per row in the driving query, and in this case, executes a further SQL query every time it is called. Using user-defined functions in SQL generally kills performance. I was hoping to find a pure SQL solution that could be applicable to other problems requiring concatenation.

3) Flotsam. In using a standalone user-defined function, it is possible you will see this function scattered around our databases as I don’t clean up after myself 100% of the time. Again, a pure SQL solution would be better, preventing yet another moving part to manage.

4) Simplicity. This solution is fairly straightforward, but if I do find a solution to the first three problems above, I want to ensure it remains as simple to use as possible. If the solution were overly complex, it won’t get used, or it will get used badly.

Solution

An old friend on Quest’s PL/SQL pipeline directed me to this article from which the possible solutions below were evaluated: http://www.oracle-base.com/articles/10g/StringAggregationTechniques.php
Here is an overview of the results applied to our specific problem:

	Solution
	Elapsed

(394 indexes)
	Recursive
	Block Gets
	Consistent Gets
	Memory Sorts

	UD Query-specific Func
	.07
	394
	0
	27590
	394

	UD Generic Func
	ORA-01000 after 285 rows
	491
	6
	668
	299

	MULTISET + make_list()
	.01 (6X faster)
	0
	0
	433
	394

	10g COLLECT + make_list()
	.01 (6X faster)
	0
	0
	7
	1

	Custom Aggregate Func
	.02 (3X faster)
	0
	0
	7
	2

	Pure SQL
	.00 (>200X faster)
	0
	0
	1387
	38

Note that the .00 (almost nil) elapsed time for the Pure SQL approach was tested 6 times to ensure that results were accurate. It is the fastest approach, despite the reported larger consistent gets and memory sorts(which are in-memory gets after all). Once again, analytics rock!

Generic REF CURSOR

One can make the function utilize a generic REF CURSOR. This is generic, but does not perform and still involves extra moving parts and familiarity with the new CURSOR() function. Tests revealed another problem. Using CURSOR() from certain environments (including sqlplusw.exe and sqlplus.exe) creates ORA-01000 (max open cursors exceeded) as these Oracle clients do not close the cursors correctly.

CREATE OR REPLACE FUNCTION concat_str(i_curv IN SYS_REFCURSOR) RETURN VARCHAR2 IS
 l_str VARCHAR2(32767);
 l_temp VARCHAR2(4000);
BEGIN
 LOOP
 FETCH i_curv INTO l_temp;
 EXIT WHEN i_curv%NOTFOUND;
 l_str := l_str||','||l_temp;
 END LOOP;

 RETURN LTRIM(l_str,',');
END concat_str;
/

SELECT c.table_name,
 c.index_name,
 concat_str(
 CURSOR (
 SELECT c2.column_name
 FROM my_ind_columns c2
 WHERE c2.index_name = c.index_name
 ORDER BY c2.column_position
)
) cols
 FROM my_ind_columns c
 GROUP BY c.table_name,
 c.index_name;
Use Existing make_list() Function

One could utilize our existing str.make_list() function, but the main parameter is a collection, meaning any sets passed to it would first have to be bulked into a collection using CAST and MULTISET. That solves #1 and #3, but looks hairy to implement, violating problem #4.

SELECT c.table_name,
 c.index_name,
 str.make_list(
 CAST(
 MULTISET (SELECT c2.column_name
 FROM my_ind_columns c2
 WHERE c2.index_name = c.index_name
 ORDER BY c2.column_position
)
 AS typ_obj_field)
) cols
 FROM my_ind_columns c
 GROUP BY c.table_name,
 c.index_name;

Use 10g COLLECT Function

If all the databases were 10g, we could use the new COLLECT function to built the result set instead of using MULTISET and the correlated subquery. This is fast, but presents additional problems. First, it still requires a user-defined function and also a user-defined data type. More moving parts. Second, simplicity is better, but still not where we’d like it to be. Third, COLLECT does not impose any order on the set being fed to it, so I had to add an inline view that orders the underlying table as desired. Finally, I had to bump up typ_obj_field to VARCHAR2(32767) to avoid Oracle error ORA-22814.

SELECT c.table_name,
 c.index_name,
 str.make_list(
 CAST(
 COLLECT(column_name) AS typ_obj_field
)
) cols
 FROM (SELECT table_name,
 index_name,
 column_name
 FROM my_ind_columns
 ORDER BY table_name,
 index_name,
 column_position) c
 GROUP BY c.table_name,
 c.index_name;

Create Custom Aggregate Function

The best solution, recommended by Tom Kyte and others should have been writing our own aggregate function (much like writing our own MAX or AVG built-in). It is a generic and simple solution that performs well. Unfortunately, it also involved more moving parts (failing problem #4). Worse, for some odd reason, it generated 101 incorrect results in a test bed of 394 indexes.

CREATE OR REPLACE TYPE MakeStrListImpl AS OBJECT
(
 g_string VARCHAR2(32767),

 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT MakeStrListImpl)
 RETURN NUMBER,

 MEMBER FUNCTION ODCIAggregateIterate
 (
 SELF IN OUT MakeStrListImpl,
 VALUE IN VARCHAR2
) RETURN NUMBER,

 MEMBER FUNCTION ODCIAggregateTerminate
 (
 SELF IN MakeStrListImpl,
 returnvalue OUT VARCHAR2,
 flags IN NUMBER
) RETURN NUMBER,

 MEMBER FUNCTION ODCIAggregateMerge
 (
 SELF IN OUT MakeStrListImpl,
 ctx2 IN MakeStrListImpl
) RETURN NUMBER
);
/

CREATE OR REPLACE TYPE BODY MakeStrListImpl IS
 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT MakeStrListImpl)
 RETURN NUMBER IS
 BEGIN
 sctx := MakeStrListImpl(NULL);
 RETURN ODCIConst.SUCCESS;
 END;

 MEMBER FUNCTION ODCIAggregateIterate
 (
 SELF IN OUT MakeStrListImpl,
 VALUE IN VARCHAR2
) RETURN NUMBER IS
 BEGIN
 SELF.g_string := SELF.g_string || ',' || VALUE;
 RETURN ODCIConst.SUCCESS;
 END;

 MEMBER FUNCTION ODCIAggregateTerminate
 (
 SELF IN MakeStrListImpl,
 returnvalue OUT VARCHAR2,
 flags IN NUMBER
) RETURN NUMBER IS
 BEGIN
 returnvalue := LTRIM(SELF.g_string,',');
 RETURN ODCIConst.SUCCESS;
 END;

 MEMBER FUNCTION ODCIAggregateMerge
 (
 SELF IN OUT MakeStrListImpl,
 ctx2 IN MakeStrListImpl
) RETURN NUMBER IS
 BEGIN
 SELF.g_string := SELF.g_string || ',' || ctx2.g_string;
 RETURN ODCIConst.SUCCESS;
 END;
END;
/

CREATE OR REPLACE FUNCTION str_list(p_input VARCHAR2)
RETURN VARCHAR2
PARALLEL_ENABLE AGGREGATE USING MakeStrListImpl;
/

SELECT c.table_name,
 c.index_name,
 STR_LIST(c.column_name) cols
 FROM (SELECT table_name,
 index_name,
 column_name,
 column_position
 FROM my_ind_columns
 ORDER BY table_name,
 index_name,
 column_position) c
 GROUP BY c.table_name,
 c.index_name;

Write it in Pure SQL

I honestly did not think this was possible. But an old online friend, William Robertson, figured it out. It uses analytics, hierarchical SQL, and the new SYS_CONNECT_BY_PATH function. His approach solves 1, 2 and 3, but is rather complex. If you can untangle this to where you can explain how it works, you may use it.

SELECT table_name,
 index_name,
 LTRIM(MAX(SYS_CONNECT_BY_PATH(column_name, ','))
 KEEP(dense_rank LAST ORDER BY curr),
 ',') AS cols
 FROM (SELECT table_name,
 index_name,
 column_name,
 column_position AS curr,
 (column_position - 1) AS prev
 FROM my_ind_columns)
 GROUP BY table_name,
 index_name
CONNECT BY prev = PRIOR curr
 AND index_name = PRIOR index_name
 START WITH curr = 1
 ORDER BY 1,
 2;

-- If you were attempting this on a table that didn't come with
-- a convenient built-in ranking like column_position, you would
-- need this syntax instead, using analytics to generate the order
SELECT table_name,
 index_name,
 LTRIM(MAX(sys_connect_by_path(column_name, ','))
 KEEP(dense_rank LAST ORDER BY curr),
 ',') AS cols
 FROM (SELECT table_name,
 index_name,
 column_name,
 column_position,
 ROW_NUMBER() OVER(
 PARTITION BY index_name ORDER BY column_position) AS curr,
 ROW_NUMBER() OVER(
 PARTITION BY index_name ORDER BY column_position) - 1 AS prev
 FROM my_ind_columns)
 GROUP BY table_name,
 index_name
CONNECT BY prev = PRIOR curr
 AND index_name = PRIOR index_name
 START WITH curr = 1
 ORDER BY 1,
 2;

This version of using SQL to generate delimited lists is my favorite, and the one I now use constantly in my work.
WITH subq
AS
(
SELECT table_name,
 index_name,
 column_name,
 row_number() OVER (PARTITION BY index_name ORDER BY column_position) rn,
 COUNT(*) OVER (PARTITION BY index_name) cnt
 FROM user_ind_columns
)
 SELECT table_name, index_name, LTRIM(sys_connect_by_path(column_name,','),',') cols_in_index
 FROM subq
 WHERE rn = cnt
 START WITH rn = 1
 CONNECT BY PRIOR index_name = index_name AND PRIOR rn = rn-1
 ORDER BY table_name, index_name;

Here is the same solution applied to finding the columns in a constraint:

WITH subq

AS
(

SELECT ucc.table_name,

 ucc.constraint_name,

 ucc.column_name,

 row_number() OVER (PARTITION BY ucc.constraint_name ORDER BY position) rn,

 COUNT(*) OVER (PARTITION BY ucc.constraint_name) cnt

 FROM user_cons_columns ucc, user_constraints uc

 WHERE ucc.constraint_name = uc.constraint_name

 AND uc.constraint_type = 'P'
)

 SELECT table_name, constraint_name, cnt, LTRIM(sys_connect_by_path(column_name,','),',') cols_in_constraint

 FROM subq

 WHERE cnt > 1
 AND rn = cnt

 START WITH rn = 1
 CONNECT BY PRIOR constraint_name = constraint_name AND PRIOR rn = rn-1
 ORDER BY cnt desc, table_name, constraint_name;

All new with Oracle 11g is the LISTAGG function. Oracle finally realized it would be nice to have something built-in which we’ve all needed and struggled to cobble together for years. Here is the same query using LISTAGG:

SELECT table_name

 ,index_name

 ,LISTAGG(column_name, ', ') WITHIN GROUP(ORDER BY column_position) cols_in_index

 FROM user_ind_columns uic

 GROUP BY table_name

 ,index_name;

